Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Vaccine ; 37(9): 1245-1251, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30651198

RESUMO

Developing country vaccine manufacturers (DCVMs) supply over half of the vaccines used in developing country immunisation programs. Decisions by developing countries to establish vaccine manufacturing should be based on economic viability, however reliable assessments of vaccine production costs are lacking. This study aimed to quantify the cost of establishing vaccine manufacturing facilities and producing vaccines in developing countries. This study estimates vaccine production costs in developing countries based on twelve vaccines produced by eight DCVMs. The results were based on estimates of the capital and operating costs required to establish vaccine manufacturing facilities under three hypothetical scenarios of production scale and scope. Cost patterns were then compared to vaccine prices paid by countries in both industrialized and developing country markets. The cost of producing vaccines in developing countries was estimated to be on average US$ 2.18 per dose, ranging between US$ 0.98 and US$ 4.85 for different vaccine types and formulations. Vaccine costs-per-dose decrease as production scale and scope increase. Cost-per-dose is mainly driven by fixed costs, but at a scale of production over 20 million doses per year it becomes driven by variable costs. Under the three hypothetical scenarios used, costs-per-dose of vaccines produced by developing countries were around 47% lower than vaccine prices in developing-country markets and 84% lower than prices in industrialized-country markets. This study has found that local production of vaccines in developing countries exhibits both economies of scale and economies of scope. The lower costs relative to prices suggests that a producer surplus and potential profits may be attainable in both developing and developed country markets, supporting sustainable production.


Assuntos
Custos e Análise de Custo , Países em Desenvolvimento/estatística & dados numéricos , Programas de Imunização , Vacinas/economia , Humanos , Programas de Imunização/economia , Vacinação/economia
2.
Vaccine ; 29(41): 7188-96, 2011 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-21651934

RESUMO

Industrial-scale inactivated polio vaccine (IPV) production dates back to the 1960s when at the Rijks Instituut voor de Volksgezondheid (RIV) in Bilthoven a process was developed based on micro-carrier technology and primary monkey kidney cells. This technology was freely shared with several pharmaceutical companies and institutes worldwide. In this contribution, the history of one of the first cell-culture based large-scale biological production processes is summarized. Also, recent developments and the anticipated upcoming shift from regular IPV to Sabin-IPV are presented. Responding to a call by the World Health Organization (WHO) for new polio vaccines, the development of Sabin-IPV was continued, after demonstrating proof of principle in the 1990s, at the Netherlands Vaccine Institute (NVI). Development of Sabin-IPV plays an important role in the WHO polio eradication strategy as biocontainment will be critical in the post-OPV cessation period. The use of attenuated Sabin strains instead of wild-type Salk polio strains will provide additional safety during vaccine production. Initially, the Sabin-IPV production process will be based on the scale-down model of the current, and well-established, Salk-IPV process. In parallel to clinical trial material production, process development, optimization and formulation research is being carried out to further optimize the process and reduce cost per dose. Also, results will be shown from large-scale (to prepare for future technology transfer) generation of Master- and Working virus seedlots, and clinical trial material (for phase I studies) production. Finally, the planned technology transfer to vaccine manufacturers in low and middle-income countries is discussed.


Assuntos
Vacina Antipólio de Vírus Inativado/imunologia , Vacina Antipólio Oral/imunologia , Poliovirus/genética , Poliovirus/imunologia , Transferência de Tecnologia , Tecnologia Farmacêutica/métodos , Animais , Linhagem Celular , Haplorrinos , Humanos , Países Baixos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA