Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Chemistry ; : e202403358, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39331479

RESUMO

Positron Emission Tomography (PET) is used in oncology for tumor diagnosis, commonly relying on fluorine-18 (18F) emission detection. The conventional method of 18F incorporation on to probes by covalent bonding is harsh for sensitive biomolecules, which are nonetheless compounds of choice for the development of targeted probes. This study explores gallium-18F (Ga18F) coordination, a milder alternative method occurring in aqueous media at the final stage of radiosyntheses. Pyclen-based chelating agents were proposed to capture (GaF) species at room temperature and pH ≥ 5 making the radiofluorination process compatible with heat- and acid-sensitive biomolecules. Highly promising results were obtained with the PC2A-based chelating agent LH2 derived from the new bifunctional PC2A-OAE-NCS compound. The solid-state structure of GaF(L) was elucidated by X-ray diffraction and revealed an unconventional heptacoordination of Ga(III). A high radiochemical conversion (RCC) of 86% was achieved at room temperature, in water at pH 5 within 20 minutes. Stability studies showed the robustness of the GaF(L) complex in aqueous media for at least one day and at least one hour for the radiolabeled analog Ga18F(L). These findings demonstrated that PC2A-based compounds are chelating agents of choice for (Ga18F) species, suggesting a real technological breakthrough for PET imaging and precision medicine.

2.
Small ; 19(30): e2206644, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36965146

RESUMO

Hydrogels are widely used as cell scaffolds in several biomedical applications. Once implanted in vivo, cell scaffolds must often be visualized, and monitored overtime. However, cell scaffolds appear poorly contrasted in most biomedical imaging modalities such as magnetic resonance imaging (MRI). MRI is the imaging technique of choice for high-resolution visualization of low-density, water-rich tissues. Attempts to enhance hydrogel contrast in MRI are performed with "negative" contrast agents that produce several image artifacts impeding the delineation of the implant's contours. In this study, a magnetic ink based on ultra-small iron oxide nanoparticles (USPIONs; <5 nm diameter cores) is developed and integrated into biocompatible alginate hydrogel used in cell scaffolding applications. Relaxometric properties of the magnetic hydrogel are measured, as well as biocompatibility and MR-visibility (T1 -weighted mode; in vitro and in vivo). A 2-week MR follow-up study is performed in the mouse model, demonstrating no image artifacts, and the retention of "positive" contrast overtime, which allows very precise delineation of tissue grafts with MRI. Finally, a 3D-contouring procedure developed to facilitate graft delineation and geometrical conformity assessment is applied on an inverted template alginate pore network. This proof-of-concept establishes the possibility to reveal precisely engineered hydrogel structures using this USPIONs ink high-visibility approach.


Assuntos
Nanopartículas , Engenharia Tecidual , Camundongos , Animais , Seguimentos , Tinta , Alicerces Teciduais/química , Imageamento por Ressonância Magnética/métodos , Hidrogéis/química , Meios de Contraste , Alginatos/química
3.
Molecules ; 28(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37959694

RESUMO

MRI contrast agents are required in the clinic to detect some pathologies, such as cancers. Nevertheless, at the moment, only small extracellular and non-specific gadolinium complexes are available for clinicians. Moreover, safety issues have recently emerged concerning the use of gadolinium complexes; hence, alternatives are urgently needed. Manganese-based MRI contrast agents could be one of these alternatives and increasing numbers of studies are available in the literature. This review aims at synthesizing all the research, from small Mn complexes to nanoparticular agents, including theranostic agents, to highlight all the efforts already made by the scientific community to obtain highly efficient agents but also evidence of the weaknesses of the developed systems.


Assuntos
Meios de Contraste , Neoplasias , Humanos , Gadolínio , Imageamento por Ressonância Magnética , Manganês , Neoplasias/diagnóstico por imagem
4.
Molecules ; 28(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37375357

RESUMO

Graptophyllum pictum is a tropical plant noticeable for its variegated leaves and exploited for various medicinal purposes. In this study, seven compounds, including three furanolabdane diterpenoids, i.e., Hypopurin E, Hypopurin A and Hypopurin B, as well as with Lupeol, ß-sitosterol 3-O-ß-d-glucopyranoside, stigmasterol 3-O-ß-d-glucopyranoside and a mixture of ß-sitosterol and stigmasterol, were isolated from G. pictum, and their structures were deduced from ESI-TOF-MS, HR-ESI-TOF-MS, 1D and 2D NMR experiments. The compounds were evaluated for their anticholinesterase activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BchE), as well as their antidiabetic potential through inhibition of α-glucosidase and α-amylase. For AChE inhibition, no sample had IC50 within tested concentrations, though the most potent was Hypopurin A, which had a percentage inhibition of 40.18 ± 0.75%, compared to 85.91 ± 0.58% for galantamine, at 100 µg/mL. BChE was more susceptible to the leaves extract (IC50 = 58.21 ± 0.65 µg/mL), stem extract (IC50 = 67.05 ± 0.82 µg/mL), Hypopurin A (IC50 = 58.00 ± 0.90 µg/mL), Hypopurin B (IC50 = 67.05 ± 0.92 µg/mL) and Hypopurin E (IC50 = 86.90 ± 0.76 µg/mL). In the antidiabetic assay, the furanolabdane diterpenoids, lupeol and the extracts had moderate to good activities. Against α-glucosidase, lupeol, Hypopurin E, Hypopurin A and Hypopurin B had appreciable activities but the leaves (IC50 = 48.90 ± 0.17 µg/mL) and stem (IC50 = 45.61 ± 0.56 µg/mL) extracts were more active than the pure compounds. In the α-amylase assay, stem extract (IC50 = 64.47 ± 0.78 µg/mL), Hypopurin A (IC50 = 60.68 ± 0.55 µg/mL) and Hypopurin B (IC50 = 69.51 ± 1.30 µg/mL) had moderate activities compared to the standard acarbose (IC50 = 32.25 ± 0.36 µg/mL). Molecular docking was performed to determine the binding modes and free binding energies of Hypopurin E, Hypopurin A and Hypopurin B in relation to the enzymes and decipher the structure-activity relationship. The results indicated that G. pictum and its compounds could, in general, be used in the development of therapies for Alzheimer's disease and diabetes.


Assuntos
Inibidores da Colinesterase , Diterpenos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Hipoglicemiantes/química , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , alfa-Glucosidases/metabolismo , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Antioxidantes/química , alfa-Amilases
5.
Molecules ; 28(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36615320

RESUMO

Diabetes mellitus is a metabolic disorder which is one of the leading causes of mortality and morbidities in elderly humans. Chronic diabetes can lead to kidney failure, blindness, limb amputation, heart attack and stroke. Physical activity, healthy diets and medications can reduce the incidence of diabetes, so the search for more efficient antidiabetic therapies, most especially from natural products, is a necessity. Herein, extract from roots of the medicinal plant Pterocarpus erinaceus was purified by column chromatography and afforded ten compounds which were characterized by EIMS, HR-FAB-MS, 1D and 2D NMR techniques. Amongst them were, a new trimeric derivative of epicatechin, named 2,3-Epoxyprocyanidin C1 (1); two pentacyclic triterpenoids, friedelin (2) and betulin (3); angolensin (4); flavonoids such as 7-methoxygenistein (5), 7-methoxydaidzein (6), apigenin 7-O-glucoronide (8) and naringenin 7-O-ß-D-glucopyranoside (9); and an ellagic acid derivative (10). The extract and compounds were evaluated for their antidiabetic potential by α-amylase and α-glucosidase inhibitory assays. IC50 values of compound 7 (48.1 ± 0.9 µg/mL), compound 8 (48.6 ± 0.1 µg/mL), compound 9 (50.2 ± 0.5 µg/mL) and extract (40.5 ± 0.8 µg/mL) when compared to that of acarbose (26.4 ± 0.3 µg/mL) indicated good α-amylase inhibition. In the α-glucosidase assay, the extract (IC50 = 31.2 ± 0.1 µg/mL), compound 7 (IC50 = 39.5 ± 1.2 µg/mL), compound 8 (IC50 = 40.9 ± 1.3 µg/mL), compound 1 (IC50 = 41.6 ± 1.0 µg/mL), Compound 4 (IC50 = 43.4 ± 0.5 µg/mL), compound 5 (IC50 = 47.6 ± 0.9 µg/mL), compound 6 (IC50 = 46.3 ± 0.2 µg/mL), compound 7 (IC50 = 45.0 ± 0.8 µg/mL), compound 9 (IC50 = 44.8 ± 0.6 µg/mL) and compound 11 (IC50 = 47.5 ± 0.4 µg/mL) all had moderate-to-good inhibitions, compared to acarbose (IC50 = 22.0 ± 0.5 µg/mL). The ability to inhibit α-amylase and α-glucosidase indicates that P. erinaceus and its compounds can lower blood glucose levels by delaying hydrolysis of carbohydrates into sugars, thereby providing a source of natural antidiabetic remedy.


Assuntos
Extratos Vegetais , alfa-Glucosidases , Humanos , Idoso , alfa-Glucosidases/metabolismo , Extratos Vegetais/química , alfa-Amilases , Acarbose , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química
6.
Inorg Chem ; 60(6): 3604-3619, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33625836

RESUMO

Magnetic resonance imaging (MRI) has a leading place in medicine as an imaging tool of high resolution for anatomical studies and diagnosis of diseases, in particular for soft tissues that cannot be accessible by other modalities. Many research works are thus focused on improving the images obtained with MRI. This technique has indeed poor sensitivity, which can be compensated by using a contrast agent (CA). Today, the clinically approved CAs on market are solely based on gadolinium complexes that may induce nephrogenic systemic fibrosis for patients with kidney failure, whereas more recent studies on healthy rats also showed Gd retention in the brain. Consequently, researchers try to elaborate other types of safer MRI CAs like manganese-based complexes. In this context, the synthesis of Mn2+ complexes of four 12-membered pyridine-containing macrocyclic ligands based on the pyclen core was accomplished and described herein. Then, the properties of these Mn(II) complexes were studied by two relaxometric methods, 17O NMR spectroscopy and 1H NMR dispersion profiles. The time of residence (τM) and the number of water molecules (q) present in the inner sphere of coordination were determined by these two experiments. The efficacy of the pyclen-based Mn(II) complexes as MRI CAs was evaluated by proton relaxometry at a magnetic field intensity of 1.41 T near those of most medical MRI scanners (1.5 T). Both the 17O NMR and the nuclear magnetic relaxation dispersion profiles indicated that the four hexadentate ligands prepared herein left one vacant coordination site to accommodate one water molecule, rapidly exchanging, in around 6 ns. Furthermore, it has been shown that the presence of an additional amide bond formed when the paramagnetic complex is conjugated to a molecule of interest does not alter the inner sphere of coordination of Mn, which remains monohydrated. These complexes exhibit r1 relaxivities, large enough to be used as clinical MRI CAs (1.7-3.4 mM-1·s-1, at 1.41 T and 37 °C).


Assuntos
Compostos Azabicíclicos/química , Meios de Contraste/química , Complexos de Coordenação/química , Compostos Azabicíclicos/síntese química , Meios de Contraste/síntese química , Complexos de Coordenação/síntese química , Ligantes , Imageamento por Ressonância Magnética , Manganês/química , Isótopos de Oxigênio/química , Estudo de Prova de Conceito , Espectroscopia de Prótons por Ressonância Magnética , Água/química
7.
Inorg Chem ; 58(19): 12798-12808, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31496230

RESUMO

The inherent lack of sensitivity of MRI needs the development of new Gd contrast agents in order to extend the application of this technique to cellular imaging. For this purpose, two multimeric MR contrast agents obtained by peptidic coupling between an amido amine dendron and GdDOTAGA chelates (premetalation strategy, G1-4GdDOTAGA) or DO3A derivatives which then were postmetalated (G1-4GdDO3A) have been prepared. By comparison to the monomers, an increase of longitudinal relaxivity has been observed for both structures. Especially for G1-4GdDO3A, a marked increase is observed between 20 and 60 MHz. This structure differs from G1-4GdDOTAGA by an increased rigidity due to the aromatic linker between each chelate and the organic framework. This has the effect of limiting local rotational movements, which has a positive impact on relaxivity.

8.
Chem Biodivers ; 16(11): e1900322, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31544357

RESUMO

The synthesis of poly[N,N-bis(3-aminopropyl)glycine] (PAPGly) dendrons Gd-based contrast agents (GdCAs) via an orthogonal protection of the different functional groups and an activation/coupling strategy wherein a specific number of synthetic steps add a generation to the existing dendron has been described. The aim of this protocol is to build up two different generations of dendrons (G-0 or dendron's core, and G-1) with peripheral NH2 groups to conjugate a 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A) derivative and afterwards to chelate with Gd3+ paramagnetic ions. These complexes, which have a well-defined molecular weight, are of relevance to MRI as an attempt to gain higher 1 H relaxivity by slowing down the rotation of molecule compared to monomeric Gd(III) complexes used as contrast agents and to increase the number of paramagnetic centers present in one molecular structure. From the study of their water 1 H longitudinal relaxation rate at different magnetic fields (NMRD, Nuclear Magnetic Relaxation Dispersion) and by evaluating the variable temperature 17 O-NMR data we determined the parameters characterizing the water exchange rate and the rotational correlation time of each complex, both affecting 1 H relaxivity. Furthermore, these two novel PAPGly GdCAs were objects of i) an in vivo study to determine their biodistributions in healthy C57 mice at several time points, and ii) the Dynamic Contrast-Enhanced MRI (DCE-MRI) approach to assess their contrast efficiency measured in the tumor region of C57BL/6 mice transplanted subcutaneously with B16-F10 melanoma cells. The aim of the comparison of these two dendrons GdCAs, having different molecular weights (MW), is to understand how MW and relaxivity may influence the contrast enhancement capabilities in vivo at low magnetic field (1 T). Significant contrast enhancement was observed in several organs (vessel, spleen and liver), already at 5 min post-injection, for the investigated CAs. Moreover, these CAs induced a marked contrast enhancement in the tumor region, thanks to the enhanced permeability retention effect of those macromolecular structures.


Assuntos
Meios de Contraste/química , Gadolínio/química , Melanoma/química , Compostos Organometálicos/química , Animais , Meios de Contraste/síntese química , Meios de Contraste/farmacocinética , Gadolínio/farmacocinética , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Melanoma/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Neoplasias Experimentais/química , Neoplasias Experimentais/diagnóstico por imagem , Compostos Organometálicos/síntese química , Compostos Organometálicos/farmacocinética , Distribuição Tecidual
9.
Molecules ; 24(24)2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31861222

RESUMO

The growing concern over the toxicity of Gd-based contrast agents used in magnetic resonance imaging (MRI) motivates the search for less toxic and more effective alternatives. Among these alternatives, iron-iron oxide (Fe@FeOx) core-shell architectures have been long recognized as promising MRI contrast agents while limited information on their engineering is available. Here we report the synthesis of 10 nm large Fe@FeOx nanoparticles, their coating with a 11 nm thick layer of dense silica and functionalization by 5 kDa PEG chains to improve their biocompatibility. The nanomaterials obtained have been characterized by a set of complementary techniques such as infra-red and nuclear magnetic resonance spectroscopies, transmission electron microscopy, dynamic light scattering and zetametry, and magnetometry. They display hydrodynamic diameters in the 100 nm range, zetapotential values around -30 mV, and magnetization values higher than the reference contrast agent RESOVIST®. They display no cytotoxicity against 1BR3G and HCT116 cell lines and no hemolytic activity against human red blood cells. Their nuclear magnetic relaxation dispersion (NMRD) profiles are typical for nanomaterials of this size and magnetization. They display high r2 relaxivity values and low r1 leading to enhanced r2/r1 ratios in comparison with RESOVIST®. All these data make them promising contrast agents to detect early stage tumors.


Assuntos
Dextranos/química , Compostos Férricos/química , Ferro/química , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Dióxido de Silício , Linhagem Celular Tumoral , Materiais Revestidos Biocompatíveis , Humanos , Nanopartículas de Magnetita/ultraestrutura , Modelos Teóricos , Dióxido de Silício/química , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Chem Biodivers ; 15(2)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29460387

RESUMO

Thanks to the understanding of the relationships between the residence lifetime τM of the coordinated water molecules to macrocyclic Gd-complexes and the rotational mobility τR of these structures, and according to the theory for paramagnetic relaxation, it is now possible to design macromolecular contrast agents with enhanced relaxivities by optimizing these two parameters through ligand structural modification. We succeeded in accelerating the water exchange rate by inducing steric compression around the water binding site, and by removing the amide function from the DOTA-AA ligand [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid mono(p-aminoanilide)] (L) previously designed. This new ligand 10[2(1-oxo-1-p-propylthioureidophenylpropyl]-1,4,7,10-tetraazacyclodecane-1,4,7-tetraacetic acid (L1 ) was then covalently conjugated to API [O-(aminopropyl)inulin] to get the complex API-(GdL1 )x with intent to slow down the rotational correlation time (τR ) of the macromolecular complex. The evaluation of the longitudinal relaxivity at different magnetic fields and the study of the 17 O-NMR at variable temperature of the low-molecular-weight compound (GdL1 ) showed a slight decrease of the τM value (τM310 = 331 ns vs. τM310 = 450 ns for the GdL complex). Consequently to the increase of the size of the API-(GdL1 )x complex, the rotational correlation time becomes about 360 times longer compared to the monomeric GdL1 complex (τR  = 33,700 ps), which results in an enhanced proton relaxivity.


Assuntos
Compostos Aza/química , Meios de Contraste/química , Gadolínio/química , Inulina/análogos & derivados , Imageamento por Ressonância Magnética , Compostos Organometálicos/química , Compostos Aza/síntese química , Meios de Contraste/síntese química , Inulina/química , Cinética , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Compostos Organometálicos/síntese química , Rotação , Água/química
11.
Biomacromolecules ; 18(9): 2756-2766, 2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28777565

RESUMO

To synthesize chitosan nanoparticles (CS NPs), ionic gelation is a very attractive method. It relies on the spontaneous supramolecular assembly of cationic CS with anionic compounds, which leads to nanohydrogels. To extend ionic gelation to functionalized CS, the assessment of CS degree of substitution (DSCS) is a key step. In this paper, we have developed a hyphenated strategy for functionalized CS characterization, based upon 1H, DOSY and, when relevant, 1D diffusion-filtered 19F NMR spectroscopies. For that, we have synthesized two series of water-soluble CS via amidation of CS amino groups with mPEG2000-COOH or fluorinated synthons (TFB-COOH). The aforementioned NMR techniques helped to discriminate between ungrafted and grafted synthons and finally to determine DSCS. According to DSCS values, the selection of CS-mPEG2000 or CS-TFB copolymers can be made to obtain, in the presence of hyaluronic acid (HA) and tripolyphosphate (TPP), CS-mPEG2000-TPP/HA or CS-TFB-TPP/HA nanohydrogels suitable for drug delivery.


Assuntos
Quitosana/análise , Hidrogéis/síntese química , Nanopartículas/química , Animais , Linhagem Celular , Compostos de Flúor/química , Ácido Hialurônico/química , Hidrogéis/efeitos adversos , Hidrogéis/química , Macrófagos/efeitos dos fármacos , Camundongos , Nanopartículas/efeitos adversos , Polietilenoglicóis/química
12.
Magn Reson Chem ; 54(7): 568-74, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26647764

RESUMO

(1) H-NMR was previously used to analyze the interaction between peptides (E3 and R826) selected by phage display to target apoptotic cells and phospholipidic models of these cells. In order to avoid the use of apoptotic cells and to obtain a fast evaluation of the efficiency of the potential MRI contrast agents obtained by grafting these peptides and their scramble analogs on a paramagnetic gadolinium complex, their proton relaxometric behavior was investigated in the presence of micelles mimicking healthy and apoptotic cells. Their preferential interaction with 1,2-dipalmitoyl-sn-glycero-3-phospho-l-serine micelles mimicking apoptotic cells as compared with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine micelles modeling healthy cells was shown by nuclear magnetic relaxation dispersion profiles and the enhancement of the transverse proton relaxation rates at 60 MHz. The association constant values confirm the stronger interaction of the selected conjugated peptides (Ka Gd-PMN-E3(gadolinium 2,2',2'',2'''-[((4-carboxy)pyridine-2,6-diyl)bis(methylenenitrilo)]-tetrakis acetate) grafted with E3 peptide): 2.43 10(4) m(-1) ; Ka Gd-DTPA-R826(gadolinium ((1-p-isothiocyanatobenzyl)-diethylenetriaminepentaacetate) grafted with R826 peptide): 2.91 10(4) m(-1) ) as compared with their conjugated scrambles (Ka Gd-PMN-E3sc(gadolinium 2,2',2'',2'''-[((4-carboxy)pyridine-2,6-diyl)bis(methylenenitrilo)]-tetrakis acetate) grafted with E3 scramble peptide): 0.18 10(4) m(-1) ; Ka Gd-DTPA-R826sc(gadolinium ((1-p-isothiocyanatobenzyl)-diethylenetriaminepentaacetate) grafted with R826 scramble peptide): 0.32 10(4) m(-1) ) even if the conjugation of E3 and R826 seems to decrease their interaction. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Apoptose , Meios de Contraste/química , Complexos de Coordenação/química , Gadolínio/química , 1,2-Dipalmitoilfosfatidilcolina/análogos & derivados , 1,2-Dipalmitoilfosfatidilcolina/química , Cinética , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Micelas , Tamanho da Partícula , Peptídeos/química , Serina/química , Propriedades de Superfície , Termodinâmica
13.
Anal Chem ; 87(3): 1701-10, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25544033

RESUMO

The development of molecular imaging by MRI requires the use of contrast agents able to recognize specifically a peculiar target at the molecular level. Iron oxide nanoparticles grafted with small organic molecules represent an interesting platform for molecular imaging. The characterization of the surface of these nanoparticles is an important step in the development of these molecular agents, and HR-MAS NMR spectroscopy appears to be a very interesting tool. The use of 1D and 2D NMR spectra is indeed very helpful to investigate the covalent grafting of organic molecules at the nanoparticle surface. DOSY spectra could also be very helpful, but we will show here that it is not possible to obtain accurate DOSY spectra on iron oxide nanoparticles.


Assuntos
Compostos Férricos/química , Espectroscopia de Ressonância Magnética/métodos , Magnetismo , Imagem Molecular/métodos , Nanopartículas/química , Fragmentos de Peptídeos/química , Humanos
14.
J Biol Inorg Chem ; 19(8): 1367-76, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25287364

RESUMO

The interaction between two peptides previously selected by phage display to target apoptotic cells and phospholipidic models of these cells (liposomes or micelles made of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and/or 1,2-dipalmitoyl-sn-glycero-3-phospho-L-serine (DPPS, phosphatidylserine analog) was studied by the simple analysis of the changes induced on the proton NMR chemical shifts of the peptides. Our approach which does not need healthy and/or apoptotic cells for assessing the affinity of different peptides is fast and efficient and requires small amounts of peptide to determine the association constant, the interacting protons, and the number of interaction sites. The micellar model gave more reliable results than the liposomal one. The preferential interaction of the peptide with DPPS was evidenced by the change of the chemical shifts of specific amino acids of the peptides. Our micellar model is thus well suited to mimic apoptotic cells.


Assuntos
Apoptose , Lipossomos/química , Micelas , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Humanos , Modelos Moleculares , Estrutura Molecular
15.
Heliyon ; 10(17): e37273, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39295992

RESUMO

Odontonema strictum (Acanthaceae) leave extract was investigated for its flavonoid content. Column chromatography was used for compound isolation and mass spectrometry was performed using electrospray ionization (ESI) in the negative ion mode for compound identification. The full characterization of luteolin 7-O-[ß-D-apiofuranosyl-(1 â†’ 2)-O-ß-D-ribofuranoside], a flavone glycoside, was achieved using tandem mass spectrometry and high resolution 1D and 2D Nuclear Magnetic Resonance (NMR). Among the 10 flavonoids glycosides detected in the ethanol extract, beside the isolated one, 3 flavone glycosides with luteolin or apigenin aglycone were tentatively identified.

16.
Nat Prod Res ; : 1-6, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092469

RESUMO

The phytochemical study of Cordia myxa L. led to the isolation, through chromatographic techniques, of a new triterpenoid saponin, 3-O-[α-L-rhamnopyranosyl-(1→3)-(6-O-acetyl-ß-D-glucopyranosyl)]-22ß-hydroxyolean-12-ene (3) namely Myxaoside A, together with three known compounds, Soyasaponine I (1), oleanolic acid (2), and 3-O-acetyl-oleanolic acid (4). All structures were established, based on 1 & 2D-NMR spectroscopic analysis and comparison with previous published reports. Compound 1-4 were evaluated for their antibacterial activity on various strains of bacteria including Salmonella typhi, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae and Vibrio cholerae. It appears that compounds 1 and 3 were active on all the tested microbial species, while compounds 2 and 4, shown no significant effect on S. aureus and K. pneumoniae at low concentrations 6.5 mg/mL and 3.0 mg/mL.

17.
Biomed Pharmacother ; 179: 117370, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39208664

RESUMO

Cancers account for many deaths worldwide and natural compounds and their derivatives are interesting chemotherapeutic agents for cancer drug development. In this study, a natural compound 3,3'4-trimethoxy-4'-rutinosylellagic acid (TR2) and its acetylated derivative 3,3'4-trimethoxy-4'-hexaacetylrutinosylellagic acid (TR22) were evaluated for their antioxidant and anticancer effects against estrogen sensitive (MCF-7) and estrogen non-sensitive (MDA-MB 231) breast adenocarcinoma. In the ß-Carotene-linoleic acid assay, DPPH• radical scavenging and CUPRAC assay, the compound TR2 had better activity than the standard α-Tocopherol, while in the ABTS•+ assay, it was more active than both standards α- α-Tocopherol and BHA. Both compounds had good antioxidant effects with TR2 being more active than TR22. Both compounds inhibited growth of breast carcinoma cells when compared to the untreated controls after 72 h. Compound TR22 significantly (p < 0.001) inhibited proliferation of both MCF-7 and MDA-MB 231 breast carcinoma cell lines suggesting that acetylation reaction improves inhibition of breast cancer cells growth. On the contrary, TR2 exhibited better inhibitory effect of clone formation than TR22 suggesting that acetylation reduces the activity in this assay. Both compounds inhibited migration of the cancer cells when compared to the untreated control cells and compound TR2 exhibited greater cellular anti-migration effect than TR22 at the same concentration and after the same period of incubation. Molecular docking studies supplemented the results and revealed that TR2 and TR22 had appreciable interactions with tyrosine kinase with negative binding energies suggesting that they are potent receptor tyrosine kinase inhibitors which can impede on cancer progression.


Assuntos
Antioxidantes , Neoplasias da Mama , Proliferação de Células , Simulação de Acoplamento Molecular , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Feminino , Acetilação , Células MCF-7 , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química
18.
Nat Prod Res ; : 1-9, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041628

RESUMO

Chemical investigation of Cordia myxa L. (Boraginaceae) resulted in the isolation of the following ten known compounds: 1-naphthaleneacetic-5-carboxy-1,2,3,4,4a,7,8,8a-octahydro-1,2,4a-trimethyl-[1S-(1α,2ß, 4a,8aα)]-acid (1), hexacosanoate-1-glyceryl (2), 3ß-urs-12,20(30)-diene-27,28-dioic acid (3), 3ß-D-glucopyranosylurs-12,20(30)-diene-27,28-dioic acid (4), stigmasterol (5), stigmasterol-3-O-ß-D-glucopyranoside (6), oleanolic-acid (7), 3-O-acetyl-oleanolic acid (8), betulin (9) and spinasterol-3ß-O-D-glucopyranoside (10). The isolated compounds were characterised by using spectroscopic methods, 1D and 2D NMR, mass spectroscopy (ESI-MS) and by comparison with the literature data. To the best of our knowledge, compounds 1, 3, 4, 8 and 10 were isolated for the first time from the Cordia genus. This result improves the chemotaxonomy knowledge of the Cordia genus. The antibacterial activities were performed by the Muller-Hinton agar diffusion method. The antibacterial activities were studied on Salmonella typhi, Staphylococcus aureus, Vibrio cholerae, Pseudomonas aeruginosa and Escherichia coli ATCC 25922. Compounds 8 and 9, at 20.0 mg/mL resulted to be effective antimicrobial against E. coli, V. cholerae and P. aeruginosa.

19.
Nat Prod Res ; 37(23): 3994-4003, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36647748

RESUMO

The current study was conducted to isolate the phytoconstituents from Erythrina senegalensis leaves and stem bark and evaluate their inhibitory activity against α-glucosidase, digestive enzyme related to diabetes mellitus. Phytochemical investigation of the leaves resulted in the isolation of three saponins (3-5), two triterpenoids (7 and 8) and two steroids (10a and 10b) as inseparable mixture, while one saponin (6), one triterpenoid (9) and one mixture of two cinnamates (2a and 2b) were isolated from the stem bark. Except for compounds 2 b, 7, 8, 10a and 10 b all the isolated compounds are reported here for the first time from the genus Erythrina. Acetylation of the mixture of two cinnamates (2a and 2b) led to a new diester derivative (1) trivially called erythrinamate. The extracts and pure compounds (3, 4, 6) showed good α-glucosidase inhibitory activity compared to the standard drug acarbose. The findings suggest that saponins of E. senegalensis could be used to develop potential anti-hyperglycemic drugs.


Assuntos
Erythrina , Saponinas , Triterpenos , alfa-Glucosidases , Cinamatos , Folhas de Planta , Saponinas/farmacologia , Triterpenos/farmacologia
20.
Int J Pharm ; 635: 122654, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36720449

RESUMO

A major challenge in nanomedicine is designing nanoplatforms (NPFs) to selectively target abnormal cells to ensure early diagnosis and targeted therapy. Among developed NPFs, iron oxide nanoparticles (IONPs) are good MRI contrast agents and can be used for therapy by hyperthermia and as radio-sensitizing agents. Active targeting is a promising method for selective IONPs accumulation in cancer tissues and is generally performed by using targeting ligands (TL). Here, a TL specific for the epidermal growth factor receptor (EGFR) is bound to the surface of dendronized IONPs to produce nanostructures able to specifically recognize EGFR-positive FaDu and 93-Vu head and neck cancer cell lines. Several parameters were optimized to ensure a high coupling yield and to adequately quantify the amount of TL per nanoparticle. Nanostructures with variable amounts of TL on the surface were produced and evaluated for their potential to specifically target and be thereafter internalized by cells. Compared to the bare NPs, the presence of the TL at the surface was shown to be effective to enhance their internalization and to play a role in the total amount of iron present per cell.


Assuntos
Neoplasias de Cabeça e Pescoço , Hipertermia Induzida , Nanopartículas de Magnetita , Nanopartículas , Humanos , Ligantes , Fator de Crescimento Epidérmico , Receptores ErbB/metabolismo , Nanopartículas/química , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Nanopartículas Magnéticas de Óxido de Ferro , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA