Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nucleic Acids Res ; 47(14): 7380-7391, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31194870

RESUMO

The ability of histone chaperone Anti-silencing factor 1 (Asf1) to direct acetylation of lysine 56 of histone H3 (H3K56ac) represents an important regulatory step in genome replication and DNA repair. In Saccharomyces cerevisiae, Asf1 interacts functionally with a second chaperone, Vps75, and the lysine acetyltransferase (KAT) Rtt109. Both Asf1 and Vps75 can increase the specificity of histone acetylation by Rtt109, but neither alter selectivity. However, changes in acetylation selectivity have been observed in histones extracted from cells, which contain a plethora of post-translational modifications. In the present study, we use a series of singly acetylated histones to test the hypothesis that histone pre-acetylation and histone chaperones function together to drive preferential acetylation of H3K56. We show that pre-acetylated H3K14ac/H4 functions with Asf1 to drive specific acetylation of H3K56 by Rtt109-Vps75. Additionally, we identified an exosite containing an acidic patch in Asf1 and show that mutations to this region alter Asf1-mediated crosstalk that changes Rtt109-Vps75 selectivity. Our proposed mechanism suggests that Gcn5 acetylates H3K14, recruiting remodeler complexes, allowing for the Asf1-H3K14ac/H4 complex to be acetylated at H3K56 by Rtt109-Vps75. This mechanism explains the conflicting biochemical data and the genetic links between Rtt109, Vps75, Gcn5 and Asf1 in the acetylation of H3K56.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilação , Proteínas de Ciclo Celular/genética , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Chaperonas Moleculares/genética , Mutação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato
2.
J Biol Chem ; 292(8): 3312-3322, 2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28077572

RESUMO

Cellular metabolism dynamically regulates the epigenome via availability of the metabolite substrates of chromatin-modifying enzymes. The impact of diet on the metabolism-epigenome axis is poorly understood but could alter gene expression and influence metabolic health. ATP citrate-lyase produces acetyl-CoA in the nucleus and cytosol and regulates histone acetylation levels in many cell types. Consumption of a high-fat diet (HFD) results in suppression of ATP citrate-lyase levels in tissues such as adipose and liver, but the impact of diet on acetyl-CoA and histone acetylation in these tissues remains unknown. Here we examined the effects of HFD on levels of acyl-CoAs and histone acetylation in mouse white adipose tissue (WAT), liver, and pancreas. We report that mice consuming a HFD have reduced levels of acetyl-CoA and/or acetyl-CoA:CoA ratio in these tissues. In WAT and the pancreas, HFD also impacted the levels of histone acetylation; in particular, histone H3 lysine 23 acetylation was lower in HFD-fed mice. Genetic deletion of Acly in cultured adipocytes also suppressed acetyl-CoA and histone acetylation levels. In the liver, no significant effects on histone acetylation were observed with a HFD despite lower acetyl-CoA levels. Intriguingly, acetylation of several histone lysines correlated with the acetyl-CoA: (iso)butyryl-CoA ratio in liver. Butyryl-CoA and isobutyryl-CoA interacted with the acetyltransferase P300/CBP-associated factor (PCAF) in liver lysates and inhibited its activity in vitro This study thus provides evidence that diet can impact tissue acyl-CoA and histone acetylation levels and that acetyl-CoA abundance correlates with acetylation of specific histone lysines in WAT but not in the liver.


Assuntos
Acil Coenzima A/metabolismo , Tecido Adiposo/metabolismo , Dieta Hiperlipídica , Histonas/metabolismo , Fígado/metabolismo , ATP Citrato (pro-S)-Liase/genética , ATP Citrato (pro-S)-Liase/metabolismo , Acetilação , Acil Coenzima A/análise , Animais , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Deleção de Genes , Histonas/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas/metabolismo
3.
Biochim Biophys Acta ; 1864(1): 70-6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26321598

RESUMO

Multiple substrate enzymes present a particular challenge when it comes to understanding their activity in a complex system. Although a single target may be easy to model, it does not always present an accurate representation of what that enzyme will do in the presence of multiple substrates simultaneously. Therefore, there is a need to find better ways to both study these enzymes in complicated systems, as well as accurately describe the interactions through kinetic parameters. This review looks at different methods for studying multiple substrate enzymes, as well as explores options on how to most accurately describe an enzyme's activity within these multi-substrate systems. Identifying and defining this enzymatic activity should help clear the way to using in vitro systems to accurately predicting the behavior of multi-substrate enzymes in vivo. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions.


Assuntos
Ensaios Enzimáticos/métodos , Enzimas/metabolismo , Algoritmos , Biocatálise , Enzimas/química , Cinética , Modelos Químicos , Especificidade por Substrato
4.
Biochemistry ; 55(27): 3727-34, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27332697

RESUMO

The histone acetyltransferase (HAT) enzymes p300 and CBP are closely related paralogs that serve as transcriptional coactivators and have been found to be dysregulated in cancer and other diseases. p300/CBP is a multidomain protein and possesses a highly conserved bromodomain that has been shown to bind acetylated Lys residues in both proteins and various small molecules, including I-CBP112 and CBP30. Here we show that the ligand I-CBP112 can stimulate nucleosome acetylation up to 3-fold while CBP30 does not. Activation of p300/CBP by I-CBP112 is not observed with the isolated histone H3 substrate but requires a nucleosome substrate. I-CBP112 does not impact nucleosome acetylation by the isolated p300 HAT domain, and the effects of I-CBP112 on p300/CBP can be neutralized by CBP30, suggesting that I-CBP112 likely allosterically activates p300/CBP through bromodomain interactions. Using mass spectrometry and Western blots, we have found that I-CBP112 particularly stimulates acetylation of Lys18 of histone H3 (H3K18) in nucleosomes, an established in vivo site of p300/CBP. In addition, we show that I-CBP112 enhances H3K18 acetylation in acute leukemia and prostate cancer cells in a concentration range commensurate with its antiproliferative effects. Our findings extend the known pharmacology of bromodomain ligands in the regulation of p300/CBP and suggest a novel approach to modulating histone acetylation in cancer.


Assuntos
Compostos de Bromo/farmacologia , Proteína p300 Associada a E1A/metabolismo , Leucemia/patologia , Nucleossomos/metabolismo , Neoplasias da Próstata/patologia , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Histonas/metabolismo , Humanos , Leucemia/tratamento farmacológico , Leucemia/metabolismo , Masculino , Modelos Moleculares , Mutagênese Sítio-Dirigida , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Ligação Proteica , Conformação Proteica , Células Tumorais Cultivadas
5.
Biochemistry ; 55(49): 6766-6775, 2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27951654

RESUMO

How protein-protein interactions regulate and alter histone modifications is a major unanswered question in epigenetics. The histone acetyltransferase p300 binds thymine DNA glycosylase (TDG); utilizing mass spectrometry to measure site-specific changes in histone acetylation, we found that the absence of TDG in mouse embryonic fibroblasts leads to a reduction in the rate of histone acetylation. We demonstrate that TDG interacts with the CH3 domain of p300 to allosterically promote p300 activity to specific lysines on histone H3 (K18 and K23). However, when TDG concentrations approach those of histones, TDG acts as a competitive inhibitor of p300 histone acetylation. These results suggest a mechanism for how histone acetylation is fine-tuned via interaction with other proteins, while also highlighting a connection between regulators of two important biological processes: histone acetylation and DNA repair/demethylation.


Assuntos
Reparo do DNA , Proteína p300 Associada a E1A/metabolismo , Histonas/metabolismo , Timina DNA Glicosilase/metabolismo , Acetilação , Animais , Linhagem Celular , Células Cultivadas , Camundongos , Camundongos Knockout , Timina DNA Glicosilase/genética
6.
Biochemistry ; 55(11): 1663-72, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26836402

RESUMO

Histone modification plays a major role in regulating gene transcription and ensuring the healthy development of an organism. Numerous studies have suggested that histones are dynamically modified during developmental events to control gene expression levels in a temporal and spatial manner. However, the study of histone acetylation dynamics using currently available techniques is hindered by the difficulty of simultaneously measuring acetylation of the numerous potential sites of modification present in histones. Here, we present a methodology that allows us to combine mass spectrometry-based histone analysis with Drosophila developmental genetics. Using this system, we characterized histone acetylation patterns during multiple developmental stages of the fly. Additionally, we utilized this analysis to characterize how treatments with pharmacological agents or environmental changes such as γ-irradiation altered histone acetylation patterns. Strikingly, γ-irradiation dramatically increased the level of acetylation at H3K18, a site linked to DNA repair via nonhomologous end joining. In mutant fly strains deficient in DNA repair proteins, however, this increase in the level of H3K18 acetylation was lost. These results demonstrate the efficacy of our combined mass spectrometry system with a Drosophila model system and provide interesting insight into the changes in histone acetylation during development, as well as the effects of both pharmacological and environmental agents on global histone acetylation.


Assuntos
Reparo do DNA , Proteínas de Drosophila/metabolismo , Raios gama , Histonas/metabolismo , Transcrição Gênica/efeitos da radiação , Acetilação , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Histonas/genética , Mutação
7.
Biochem J ; 472(2): 239-48, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26420880

RESUMO

We have a limited understanding of the site specificity of multi-subunit lysine acetyltransferase (KAT) complexes for histone-based substrates, especially in regards to the different complexes formed during nucleosome assembly. Histone complexes could be a major factor in determining the acetylation specificity of KATs. In the present study, we utilized a label-free quantitative MS-based method to determine the site specificity of acetylation catalysed by Piccolo NuA4 on (H3/H4)2 tetramer, tetramer bound DNA (tetrasome) and nucleosome core particle (NCP). Our results show that Piccolo NuA4 can acetylate multiple lysine residues on these three histone complexes, of which NCP is the most favourable, (H3/H4)2 tetramer is the second and tetrasome is the least favourable substrate for Piccolo NuA4 acetylation. Although Piccolo NuA4 preferentially acetylates histone H4 (H4K12), the site specificity of the enzyme is altered with different histone complex substrates. Our results show that before nucleosome assembly is complete, H3K14 specificity is almost equal to that of H4K12 and DNA-histone interactions suppress the acetylation ability of Piccolo NuA4. These data suggest that the H2A/H2B dimer could play a critical role in the increase in acetylation specificity of Piccolo NuA4 for NCP. This demonstrates that histone complex formation can alter the acetylation preference of Piccolo NuA4. Such findings provide valuable insight into regulating Piccolo NuA4 specificity by modulating chromatin dynamics and in turn manipulating gene expression.


Assuntos
Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Xenopus/metabolismo , Acetilcoenzima A/metabolismo , Acetilação , Acetiltransferases , Animais , Montagem e Desmontagem da Cromatina , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Histonas/química , Histonas/genética , Cinética , Lisina/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Nucleossomos/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Estrutura Quaternária de Proteína , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato , Proteínas de Xenopus/química , Proteínas de Xenopus/genética
8.
Methods ; 70(2-3): 127-33, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25123533

RESUMO

Histone acetylation is involved in gene regulation and, most importantly, aberrant regulation of histone acetylation is correlated with major human diseases. Although many lysine acetyltransferases (KATs) have been characterized as being capable of acetylating multiple lysine residues on histones, how different factors such as enzyme complexes or external stimuli (e.g. KAT activators or inhibitors) alter KAT specificity remains elusive. In order to comprehensively understand how the homeostasis of histone acetylation is maintained, a method that can quantitate acetylation levels of individual lysines on histones is needed. Here we demonstrate that our mass spectrometry (MS)-based method accomplishes this goal. In addition, the high throughput, high sensitivity, and high dynamic range of this method allows for effectively and accurately studying steady-state kinetics. Based on the kinetic parameters from in vitro enzymatic assays, we can determine the specificity and selectivity of a KAT and use this information to understand what factors influence histone acetylation. These approaches can be used to study the enzymatic mechanisms of histone acetylation as well as be adapted to other histone modifications. Understanding the post-translational modification of individual residues within the histones will provide a better picture of chromatin regulation in the cell.


Assuntos
Histonas/metabolismo , Espectrometria de Massas/métodos , Acetilação , Cromatografia Líquida de Alta Pressão , Histonas/química , Cinética , Processamento de Proteína Pós-Traducional
9.
Mol Cancer ; 13: 29, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24529102

RESUMO

BACKGROUND: Recent genome-wide studies have shown that approximately 30% of diffuse large B-cell lymphoma (DLBCL) cases harbor mutations in the histone acetyltransferase (HAT) coactivators p300 or CBP. The majority of these mutations reduce or eliminate the catalytic HAT activity. We previously demonstrated that the human DLBCL cell line RC-K8 expresses a C-terminally truncated, HAT-defective p300 protein (p300ΔC-1087), whose expression is essential for cell proliferation. METHODS: Using results from large-scale DLBCL studies, we have identified and characterized a second C-terminally truncated, HAT-defective p300 mutant, p300ΔC-820, expressed in the SUDHL2 DLBCL cell line. Properties of p300ΔC-820 were characterized in the SUDHL2 DLBCL cell line by Western blotting, co-immunoprecipitation, and shRNA gene knockdown, as well by using cDNA expression vectors for p300ΔC-820 in pull-down assays, transcriptional reporter assays, and immunofluorescence experiments. A mass spectrometry-based method was used to compare the histone acetylation profile of DLBCL cell lines expressing various levels of wild-type p300. RESULTS: We show that the SUDHL2 cell line expresses a C-terminally truncated, HAT-defective form of p300 (p300ΔC-820), but no wild-type p300. The p300ΔC-820 protein has a wild-type ability to localize to subnuclear "speckles," but has a reduced ability to enhance transactivation by transcription factor REL. Knockdown of p300ΔC-820 in SUDHL2 cells reduced their proliferation and soft agar colony-forming ability. In RC-K8 cells, knockdown of p300ΔC-1087 resulted in increased expression of mRNA and protein for REL target genes A20 and IκBα, two genes that have been shown to limit the growth of RC-K8 cells when overexpressed. Among a panel of B-lymphoma cell lines, low-level expression of full-length p300 protein, which is characteristic of the SUDHL2 and RC-K8 cells, was associated with decreased acetylation of histone H3 at lysines 14 and 18. CONCLUSIONS: The high prevalence of p300 mutations in DLBCL suggests that HAT-deficient p300 activity defines a subtype of DLBCL, which we have investigated using human DLBCL cell lines RC-K8 and SUDHL2. Our results suggest that truncated p300 proteins contribute to DLBCL cell growth by affecting the expression of specific genes, perhaps through a mechanism that involves alterations in global histone acetylation.


Assuntos
Proliferação de Células , Regulação Neoplásica da Expressão Gênica/genética , Linfoma Difuso de Grandes Células B/genética , Fatores de Transcrição de p300-CBP/genética , Acetilação , Western Blotting , Linhagem Celular Tumoral , Imunofluorescência , Histonas/genética , Histonas/metabolismo , Humanos , Imunoprecipitação , Mutação , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , Transcriptoma
10.
Biochemistry ; 52(34): 5746-59, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23862699

RESUMO

Although p300 and CBP lysine acetyltransferases are often treated interchangeably, the inability of one enzyme to compensate for the loss of the other suggests unique roles for each. As these deficiencies coincide with aberrant levels of histone acetylation, we hypothesized that the key difference between p300 and CBP activity is differences in their specificity/selectivity for lysines within the histones. Utilizing a label-free, quantitative mass spectrometry based technique, we determined the kinetic parameters of both CBP and p300 at each lysine of H3 and H4, under conditions we would expect to encounter in the cell (either limiting acetyl-CoA or histone). Our results show that while p300 and CBP acetylate many common residues on H3 and H4, they do in fact possess very different specificities, and these specificities are dependent on whether histone or acetyl-CoA is limiting. Steady-state experiments with limiting H3 demonstrate that both CBP and p300 acetylate H3K14, H3K18, H3K23, with p300 having specificities up to 10¹°-fold higher than CBP. Utilizing tetramer as a substrate, both enzymes also acetylate H4K5, H4K8, H4K12, and H4K16. With limiting tetramer, CBP displays higher specificities, especially at H3K18, where CBP specificity is 10³²-fold higher than p300. With limiting acetyl-CoA, p300 has the highest specificity at H4K16, where specificity is 10¹8-fold higher than CBP. This discovery of unique specificity for targets of CBP- vs p300-mediated acetylation of histone lysine residues presents a new model for understanding their respective biological roles and possibly an opportunity for selective therapeutic intervention.


Assuntos
Proteína p300 Associada a E1A/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Acetilcoenzima A/metabolismo , Acetilação , Humanos , Especificidade por Substrato , Fatores de Transcrição de p300-CBP/genética
11.
Methods Mol Biol ; 2626: 399-444, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36715918

RESUMO

Citizen science is a productive approach to include non-scientists in research efforts that impact particular issues or communities. In most cases, scientists at advanced career stages design high-quality, exciting projects that enable citizen contribution, a crowdsourcing process that drives discovery forward and engages communities. The challenges of having citizens design their own research with no or limited training and providing access to laboratory tools, reagents, and supplies have limited citizen science efforts. This leaves the incredible life experiences and immersion of citizens in communities that experience health disparities out of the research equation, thus hampering efforts to address community health needs with a full picture of the challenges that must be addressed. Here, we present a robust and reproducible approach that engages participants from Grade 5 through adult in research focused on defining how diet impacts disease signaling. We leverage the powerful genetics, cell biology, and biochemistry of Drosophila oogenesis to define how nutrients impact phenotypes associated with genetic mutants that are implicated in cancer and diabetes. Participants lead the project design and execution, flipping the top-down hierarchy of the prevailing scientific culture to co-create research projects and infuse the research with cultural and community relevance.


Assuntos
Drosophila , Saúde Pública , Animais , Pesquisa
12.
Cancers (Basel) ; 14(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35884401

RESUMO

Aberrant transcription in cancer cells involves the silencing of tumor suppressor genes (TSGs) and activation of oncogenes. Transcriptomic changes are associated with epigenomic alterations such as DNA-hypermethylation, histone deacetylation, and chromatin condensation in promoter regions of silenced TSGs. To discover novel drugs that trigger TSG reactivation in cancer cells, we used a GFP-reporter system whose expression is silenced by promoter DNA hypermethylation and histone deacetylation. After screening a natural product drug library, we identified that toyocamycin, an adenosine-analog, induces potent GFP reactivation and loss of clonogenicity in human colon cancer cells. Connectivity-mapping analysis revealed that toyocamycin produces a pharmacological signature mimicking cyclin-dependent kinase (CDK) inhibitors. RNA-sequencing revealed that the toyocamycin transcriptomic signature resembles that of a specific CDK9 inhibitor (HH1). Specific inhibition of RNA Pol II phosphorylation level and kinase assays confirmed that toyocamycin specifically inhibits CDK9 (IC50 = 79 nM) with a greater efficacy than other CDKs (IC50 values between 0.67 and 15 µM). Molecular docking showed that toyocamycin efficiently binds the CDK9 catalytic site in a conformation that differs from other CDKs, explained by the binding contribution of specific amino acids within the catalytic pocket and protein backbone. Altogether, we demonstrated that toyocamycin exhibits specific CDK9 inhibition in cancer cells, highlighting its potential for cancer chemotherapy.

13.
J Biol Chem ; 285(37): 28496-505, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20628185

RESUMO

Reconstitution of eukaryotic Okazaki fragment processing implicates both one- and two-nuclease pathways for processing flap intermediates. In most cases, FEN1 (flap endonuclease 1) is able to efficiently cleave short flaps as they form. However, flaps escaping cleavage bind replication protein A (RPA) inhibiting FEN1. The flaps must then be cleaved by Dna2 nuclease/helicase before FEN1 can act. Pif1 helicase aids creation of long flaps. The pathways were considered connected only in that the products of Dna2 cleavage are substrates for FEN1. However, results presented here show that Dna2, Pif1, and RPA, the unique proteins of the two-nuclease pathway from Saccharomyces cerevisiae, all stimulate FEN1 acting in the one-nuclease pathway. Stimulation is observed on RNA flaps representing the initial displacement and on short DNA flaps, subsequently displaced. Neither the RNA nor the short DNA flaps can bind the two-nuclease pathway proteins. Instead, direct interactions between FEN1 and the two-nuclease pathway proteins have been detected. These results suggest that the proteins are either part of a complex or interact successively with FEN1 because the level of stimulation would be similar either way. Proteins bound to FEN1 could be tethered to the flap base by the interaction of FEN1 with PCNA, potentially improving their availability when flaps become long. These findings also support a model in which cleavage by FEN1 alone is the preferred pathway, with the first opportunity to complete cleavage, and is stimulated by components of the backup pathway.


Assuntos
Acetiltransferases/metabolismo , Replicação do DNA/fisiologia , DNA Fúngico/biossíntese , DNA/metabolismo , Proteínas de Membrana/metabolismo , Modelos Biológicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetiltransferases/genética , DNA/genética , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Fúngico/genética , Proteínas de Membrana/genética , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
14.
J Biol Chem ; 285(53): 41712-23, 2010 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-20959454

RESUMO

Two pathways have been proposed for eukaryotic Okazaki fragment RNA primer removal. Results presented here provide evidence for an alternative pathway. Primer extension by DNA polymerase δ (pol δ) displaces the downstream fragment into an RNA-initiated flap. Most flaps are cleaved by flap endonuclease 1 (FEN1) while short, and the remaining nicks joined in the first pathway. A small fraction escapes immediate FEN1 cleavage and is further lengthened by Pif1 helicase. Long flaps are bound by replication protein A (RPA), which inhibits FEN1. In the second pathway, Dna2 nuclease cleaves an RPA-bound flap and displaces RPA, leaving a short flap for FEN1. Pif1 flap lengthening creates a requirement for Dna2. This relationship should not have evolved unless Pif1 had an important role in fragment processing. In this study, biochemical reconstitution experiments were used to gain insight into this role. Pif1 did not promote synthesis through GC-rich sequences, which impede strand displacement. Pif1 was also unable to open fold-back flaps that are immune to cleavage by either FEN1 or Dna2 and cannot be bound by RPA. However, Pif1 working with pol δ readily unwound a full-length Okazaki fragment initiated by a fold-back flap. Additionally, a fold-back in the template slowed pol δ synthesis, so that the fragment could be removed before ligation to the lagging strand. These results suggest an alternative pathway in which Pif1 removes Okazaki fragments initiated by fold-back flaps in vivo.


Assuntos
DNA Helicases/genética , Replicação do DNA , DNA , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Acetiltransferases/genética , DNA Helicases/metabolismo , DNA Polimerase III/química , Proteínas de Membrana/genética , Modelos Genéticos , Oligonucleotídeos/química , Oligonucleotídeos/genética , Estrutura Secundária de Proteína , RNA/química , RNA/genética , Proteína de Replicação A/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Elife ; 102021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33522486

RESUMO

Sequencing of cancer genomes has identified recurrent somatic mutations in histones, termed oncohistones, which are frequently poorly understood. Previously we showed that fission yeast expressing only the H3.3G34R mutant identified in aggressive pediatric glioma had reduced H3K36 trimethylation and acetylation, increased genomic instability and replicative stress, and defective homology-dependent DNA damage repair. Here we show that surprisingly distinct phenotypes result from G34V (also in glioma) and G34W (giant cell tumors of bone) mutations, differentially affecting H3K36 modifications, subtelomeric silencing, genomic stability; sensitivity to irradiation, alkylating agents, and hydroxyurea; and influencing DNA repair. In cancer, only 1 of 30 alleles encoding H3 is mutated. Whilst co-expression of wild-type H3 rescues most G34 mutant phenotypes, G34R causes dominant hydroxyurea sensitivity, homologous recombination defects, and dominant subtelomeric silencing. Together, these studies demonstrate the complexity associated with different substitutions at even a single residue in H3 and highlight the utility of genetically tractable systems for their analysis.


Assuntos
Histonas/metabolismo , Recombinação Homóloga , Proteínas Mutantes/metabolismo , Schizosaccharomyces/metabolismo , Reparo do DNA , Replicação do DNA , Instabilidade Genômica , Histonas/genética , Proteínas Mutantes/genética , Schizosaccharomyces/genética
16.
Cells ; 8(9)2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31480793

RESUMO

Lysine acetyltransferases (KATs) are exquisitely fine-tuned to target specific lysine residues on many proteins, including histones, with aberrant acetylation at distinct lysines implicated in different pathologies. However, researchers face a lack of molecular tools to probe the importance of site-specific acetylation events in vivo. Because of this, there can be a disconnect between the predicted in silico or in vitro effects of a drug and the actual observable in vivo response. We have previously reported on how an in vitro biochemical analysis of the site-specific effects of the compound C646 in combination with the KAT p300 can accurately predict changes in histone acetylation induced by the same compound in cells. Here, we build on this effort by further analyzing a number of reported p300 modulators, while also extending the analysis to correlate the effects of these drugs to developmental and phenotypical changes, utilizing cellular and zebrafish model systems. While this study demonstrates the utility of biochemical models as a starting point for predicting in vivo activity of multi-site targeting KATs, it also highlights the need for the development of new enzyme inhibitors that are more specific to the regulation of KAT activity in vivo.


Assuntos
Inibidores Enzimáticos/farmacologia , Lisina Acetiltransferases/química , Acetilação , Animais , Sítios de Ligação , Linhagem Celular , Embrião não Mamífero/efeitos dos fármacos , Inibidores Enzimáticos/toxicidade , Histonas/metabolismo , Lisina Acetiltransferases/antagonistas & inibidores , Lisina Acetiltransferases/metabolismo , Ligação Proteica , Testes de Toxicidade/normas , Peixe-Zebra
17.
Elife ; 62017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28718400

RESUMO

Recurrent somatic mutations of H3F3A in aggressive pediatric high-grade gliomas generate K27M or G34R/V mutant histone H3.3. H3.3-G34R/V mutants are common in tumors with mutations in p53 and ATRX, an H3.3-specific chromatin remodeler. To gain insight into the role of H3-G34R, we generated fission yeast that express only the mutant histone H3. H3-G34R specifically reduces H3K36 tri-methylation and H3K36 acetylation, and mutants show partial transcriptional overlap with set2 deletions. H3-G34R mutants exhibit genomic instability and increased replication stress, including slowed replication fork restart, although DNA replication checkpoints are functional. H3-G34R mutants are defective for DNA damage repair by homologous recombination (HR), and have altered HR protein dynamics in both damaged and untreated cells. These data suggest H3-G34R slows resolution of HR-mediated repair and that unresolved replication intermediates impair chromosome segregation. This analysis of H3-G34R mutant fission yeast provides mechanistic insight into how G34R mutation may promote genomic instability in glioma.


Assuntos
Replicação do DNA , Instabilidade Genômica , Histonas/metabolismo , Recombinação Homóloga , Proteínas Mutantes/metabolismo , Schizosaccharomyces/metabolismo , Reparo do DNA , Histonas/genética , Proteínas Mutantes/genética , Mutação de Sentido Incorreto , Schizosaccharomyces/genética
18.
Clin Cancer Res ; 11(12): 4601-9, 2005 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15958646

RESUMO

PURPOSE: We have previously shown that the transcriptional inhibitor tetra-O-methyl nordihydroguaiaretic acid (M4N) induces growth arrest in tumor cells and exhibits tumoricidal activity when injected intratumorally into tumor cell explants in mice. The experiments reported here were designed to determine whether M(4)N can be given systemically and inhibit the growth of five different human xenograft tumors. EXPERIMENTAL DESIGN: Nude (nu/nu) mice bearing xenografts of each of five human tumor types (i.e., hepatocellular carcinoma, Hep 3B; prostate carcinoma, LNCaP; colorectal carcinoma, HT-29; breast carcinoma, MCF7; and erythroleukemia, K-562) were treated with M4N given i.v. or i.p. in a Cremophor EL-based solvent system or orally in a corn oil based diet. Tumors from the treated animals were measured weekly and analyzed for the expression of the Cdc2 and survivin genes, both previously shown to be down-regulated by M4N. RESULTS: Systemic M4N treatment suppressed the in vivo growth of xenografts in each of the five human tumor types. Four of the five tumor models were particularly sensitive to M4N with tumor growth inhibitions (T/C values) of < or = 42%, whereas the fifth, HT-29, responded to a lesser extent (48.3%). Growth arrest and apoptosis in both the xenograft tumors and in the tumor cells grown in culture were accompanied by reductions in both Cdc2 and tumor-specific survivin gene expression. Pharmacokinetic analysis following oral and i.v. administration to ICR mice indicated an absolute bioavailability for oral M4N of approximately 88%. Minimal drug-related toxicity was observed. CONCLUSION: These preclinical studies establish that when given systemically, M4N can safely and effectively inhibit the growth of human tumors in nude mice.


Assuntos
Proliferação de Células/efeitos dos fármacos , Masoprocol/análogos & derivados , Masoprocol/farmacologia , Neoplasias Experimentais/prevenção & controle , Administração Oral , Animais , Área Sob a Curva , Proteína Quinase CDC2/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HT29 , Humanos , Proteínas Inibidoras de Apoptose , Injeções Intravenosas , Células K562 , Masoprocol/administração & dosagem , Masoprocol/farmacocinética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Neoplasias , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Survivina , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
19.
Cancer Res ; 76(6): 1494-505, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26719529

RESUMO

Targeting epigenetic pathways is a promising approach for cancer therapy. Here, we report on the unexpected finding that targeting calcium signaling can reverse epigenetic silencing of tumor suppressor genes (TSG). In a screen for drugs that reactivate silenced gene expression in colon cancer cells, we found three classical epigenetic targeted drugs (DNA methylation and histone deacetylase inhibitors) and 11 other drugs that induced methylated and silenced CpG island promoters driving a reporter gene (GFP) as well as endogenous TSGs in multiple cancer cell lines. These newly identified drugs, most prominently cardiac glycosides, did not change DNA methylation locally or histone modifications globally. Instead, all 11 drugs altered calcium signaling and triggered calcium-calmodulin kinase (CamK) activity, leading to MeCP2 nuclear exclusion. Blocking CamK activity abolished gene reactivation and cancer cell killing by these drugs, showing that triggering calcium fluxes is an essential component of their epigenetic mechanism of action. Our data identify calcium signaling as a new pathway that can be targeted to reactivate TSGs in cancer.


Assuntos
Antineoplásicos/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Epigênese Genética/efeitos dos fármacos , Genes Supressores de Tumor/efeitos dos fármacos , Sinalização do Cálcio/genética , Linhagem Celular , Linhagem Celular Tumoral , Ilhas de CpG/efeitos dos fármacos , Ilhas de CpG/genética , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Epigênese Genética/genética , Epigenômica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica/efeitos dos fármacos , Células HCT116 , Células HEK293 , Células HL-60 , Inibidores de Histona Desacetilases/farmacologia , Humanos , Células K562 , Proteínas Nucleares/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
20.
Cell Rep ; 17(4): 1037-1052, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27760311

RESUMO

Mechanisms of metabolic flexibility enable cells to survive under stressful conditions and can thwart therapeutic responses. Acetyl-coenzyme A (CoA) plays central roles in energy production, lipid metabolism, and epigenomic modifications. Here, we show that, upon genetic deletion of Acly, the gene coding for ATP-citrate lyase (ACLY), cells remain viable and proliferate, although at an impaired rate. In the absence of ACLY, cells upregulate ACSS2 and utilize exogenous acetate to provide acetyl-CoA for de novo lipogenesis (DNL) and histone acetylation. A physiological level of acetate is sufficient for cell viability and abundant acetyl-CoA production, although histone acetylation levels remain low in ACLY-deficient cells unless supplemented with high levels of acetate. ACLY-deficient adipocytes accumulate lipid in vivo, exhibit increased acetyl-CoA and malonyl-CoA production from acetate, and display some differences in fatty acid content and synthesis. Together, these data indicate that engagement of acetate metabolism is a crucial, although partial, mechanism of compensation for ACLY deficiency.


Assuntos
ATP Citrato (pro-S)-Liase/metabolismo , Acetatos/metabolismo , Glucose/metabolismo , ATP Citrato (pro-S)-Liase/deficiência , Acetato-CoA Ligase/metabolismo , Acetatos/farmacologia , Acetilcoenzima A/metabolismo , Acetilação , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Deleção de Genes , Histonas/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/biossíntese , Masculino , Camundongos , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA