Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Blood Press Monit ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133561

RESUMO

OBJECTIVE: Remote patient monitoring (RPM) beat-to-beat blood pressure (BP) provides an opportunity to measure poststroke BP variability (BPV), which is associated with clinical stroke outcomes. BP sampling interval (SI) influences ambulatory BPV, but RPM BP SI optimisation research is limited. SI and RPM device capabilities require compromises, meaning SI impact requires investigation. Therefore, this study assessed healthy and stroke subtype BPV via optimised BP sampling, aiding sudden BP change identification and potentially assisting cardiovascular event (recurrent stroke) prediction. METHODS: Leicester Cerebral Haemodynamic Database ischaemic [acute ischaemic stroke (AIS), n = 68] and haemorrhagic stroke (intracerebral haemorrhage, n = 12) patient and healthy control (HC, n = 40) baseline BP data were analysed. Intrasubject and interpatient SD (SDi/SDp) represented individual/population variability with synthetically altered SIs. Matched-filter approaches using cross-correlation function detected sudden BP changes. RESULTS: At SIs between 1 and 180 s, SBP and DBP SDi staticised while SDp increased at SI < 30 s. Mean BP and HR SDi and SDp increased at SI < 60s. AIS BPV, normalised to SI1s, increased at SI30s (26%-131%) and SI120s (1%-274%). BPV increased concomitantly with SI. Cross-correlation analysis showed HC and AIS BP sudden change detection accuracy reductions with increasing SI. Positive BP deviation detection fell 48.48% (SI10s) to 78.79% (SI75s) in HC and 67.5% (SI10s) to 100% (SI75s) in AIS. Negative BP deviation detection fell 50% (SI10s) to 82.35% (SI75s) in HC and 52.27% (SI10s) to 95.45% (SI75s) in AIS. CONCLUSION: Sudden BP change detection and BPV are relatively robust to SI increases within certain limits, but accuracy reductions generate unacceptable estimates, considerable within RPM device design. This research warrants further SI optimisation.

2.
Nat Commun ; 12(1): 4211, 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244511

RESUMO

The margins of the Caribbean and associated hazards and resources have been shaped by a poorly understood history of subduction. Using new data, we improve teleseismic P-wave imaging of the eastern Caribbean upper mantle and compare identified subducted-plate fragments with trench locations predicted from plate reconstruction. This shows that material at 700-1200 km depth below South America derives from 90-115 Myr old westward subduction, initiated prior to Caribbean Large-Igneous-Province volcanism. At shallower depths, an accumulation of subducted material is attributed to Great Arc of the Caribbean subduction as it evolved over the past 70 Ma. We interpret gaps in these subducted-plate anomalies as: a plate window and tear along the subducted Proto-Caribbean ridge; tearing along subducted fracture zones, and subduction of a volatile-rich boundary between Proto-Caribbean and Atlantic domains. Phases of back-arc spreading and arc jumps correlate with changes in age, and hence buoyancy, of the subducting plate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA