RESUMO
Thanks to technical progress and the availability of virtual data, sex estimation methods as part of a biological profile are undergoing an inevitable evolution. Further reductions in subjectivity, but potentially also in measurement errors, can be brought by approaches that automate the extraction of variables. Such automatization also significantly accelerates and facilitates the specialist's work. The aim of this study is (1) to apply a previously proposed algorithm (Kuchar et al. 2021) to automatically extract 10 variables used for the DSP2 sex estimation method, and (2) to test the robustness of the new automatic approach in a current heterogeneous population. For the first aim, we used a sample of 240 3D scans of pelvic bones from the same individuals, which were measured manually for the DSP database. For the second aim a sample of 108 pelvic bones from the New Mexico Decedent Image Database was used. The results showed high agreement between automatic and manual measurements with rTEM below 5% for all dimensions except two. The accuracy of final sex estimates based on all 10 variables was excellent (error rate 0.3%). However, we observed a higher number of undetermined individuals in the Portuguese sample (25% of males) and the New Mexican sample (36.5% of females). In conclusion, the procedure for automatic dimension extraction was successfully applied both to a different type of data and to a heterogeneous population.
Assuntos
Algoritmos , Antropologia Forense , Imageamento Tridimensional , Ossos Pélvicos , Determinação do Sexo pelo Esqueleto , Humanos , Determinação do Sexo pelo Esqueleto/métodos , Masculino , Feminino , Ossos Pélvicos/diagnóstico por imagem , Antropologia Forense/métodos , Adulto , Pessoa de Meia-Idade , Idoso , Adulto Jovem , Portugal , Idoso de 80 Anos ou maisRESUMO
The alteration in mechanical properties of posterior pelvis ligaments may cause a biased pelvis deformation which, in turn, may contribute to hip and spine instability and malfunction. Here, the effect of different mechanical properties of ligaments on lumbopelvic deformation is analyzed via the finite element method. First, the improved finite element model was validated using experimental data from previous studies and then used to calculate the sensitivity of lumbopelvic deformation to changes in ligament mechanical properties, load magnitude, and unilateral ligament resection. The deformation of the lumbopelvic complex relative to a given load was predominant in the medial plane. The effect of unilateral resection on deformation appeared to be counterintuitive, suggesting that ligaments have the ability to redistribute load and that they play an important role in the mechanics of the lumbopelvic complex.
Assuntos
Pelve , Articulação Sacroilíaca , Fenômenos Biomecânicos , Análise de Elementos Finitos , Ligamentos , Ligamentos ArticularesRESUMO
Diffeomorphic shape registration allows for the seamless geometric alignment of shapes. In this study, we demonstrated the use of a registration algorithm to automatically seed anthropological landmarks on the CT images of the pelvis. We found a high correlation between manually and automatically seeded landmarks. The registration algorithm makes it possible to achieve a high degree of automation with the potential to reduce operator errors in the seeding of anthropological landmarks. The results of this study represent a promising step forward in effectively defining the anthropological measures of the human skeleton.
Assuntos
Algoritmos , Pontos de Referência Anatômicos , Processamento de Imagem Assistida por Computador , Ossos Pélvicos/anatomia & histologia , Ossos Pélvicos/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Idoso , Feminino , Antropologia Forense/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Determinação do Sexo pelo Esqueleto/métodosRESUMO
PURPOSE: The cement augmentation of a conventional anterior screw fixation in type II odontoid process fractures for elderly patients significantly increased stiffness and load to failure under anterior-posterior load in comparison with non-augmented fixation. The amount and quality of bone cement are usually taken ad hoc in clinical practise. In this study, we wanted to clarify the role of bone cement amount and its quality to the stiffness of odontoid and vertebrae body junction. METHODS: Finite-element method was used to achieve different scenarios of cement augmentation. For all models, an initial stiffness was calculated. Model (1) the intact vertebrae were virtually potted into a polymethylmethacrylate base via the posterior vertebral arches. A V-shaped punch was used for loading the odontoid in an anterior-posterior direction. (2) The odontoid fracture type IIa (Anderson-D'Alonzo classification) was achieved by virtual transverse osteotomy. Anterior screw fixation was virtually performed by putting self-drilling titanium alloy 3.5 mm diameter anterior cannulated lag screw with a 12 mm thread into the inspected vertebrae. A V-shaped punch was used for loading the odontoid in an anterior-posterior direction. The vertebrae body was assumed to be non-cemented and cemented with different volume. RESULTS: The mean cement volume was lowest for body base filling with 0.47 ± 0.03 ml. The standard body filling corresponds to 0.95 ± 0.15 ml. The largest volume corresponds to 1.62 ± 0.12 ml in the presence of cement leakage. The initial stiffness of the intact C2 vertebrae was taken as the reference value. The mean initial stiffness for non-porous cement (E = 3000 MPa) increased linearly (R2 = 0.98). The lowest stiffness (123.3 ± 5.8 N/mm) was measured in the intact C2 vertebrae. However, the highest stiffness (165.2 ± 5.2 N/mm) was measured when cement leakage out of the odontoid peg occurred. The mean initial stiffness of the base-only cemented group was 147.2 ± 8.4 N/mm compared with 157.9 ± 6.6 N/mm for the base and body cemented group. This difference was statistically significant (p < 0.0061). The mean initial stiffness for porous cement (E = 500 MPa) remains constant. Therefore, there is no difference between cemented and non-cemented junction. This difference was not statistically significant (p < 0.18). CONCLUSION: The present study showed that the low porous cement was able to significantly influence the stiffness of the augmented odontoid screw fixation in vitro, although further in vivo clinical studies should be undertaken. Our results suggest that only a small amount of non-porous cement is needed to restore stiffness at least to its pre-fracture level and this can be achieved with the injection of 0.7-1.2 ml of cement. These slides can be retrieved under Electronic Supplementary Material.
Assuntos
Processo Odontoide , Fraturas da Coluna Vertebral , Idoso , Cimentos Ósseos/uso terapêutico , Parafusos Ósseos , Fixação Interna de Fraturas , Humanos , Processo Odontoide/diagnóstico por imagem , Processo Odontoide/lesões , Processo Odontoide/cirurgia , Fraturas da Coluna Vertebral/diagnóstico por imagem , Fraturas da Coluna Vertebral/cirurgiaRESUMO
INTRODUCTION: This systematic review aims to identify previously used techniques in biomechanics to assess pelvic instability following pelvic injury, focusing on external fixation constructs. METHODS: A systematic literature search was conducted to include biomechanical studies and to exclude clinical trials. RESULTS: Of an initial 4666 studies found, 38 met the inclusion criteria. 84% of the included studies were retrieved from PubMed, Scopus, and Web of Science. The studies analysed 106 postmortem specimens, 154 synthetic bones, and 103 computational models. Most specimens were male (97% synthetic, 70% postmortem specimens). Both the type of injury and the classification system employed varied across studies. About 82% of the injuries assessed were of type C. Two different fixators were tested for FFPII and type A injury, five for type B injury, and fifteen for type C injury. Large variability was observed for external fixation constructs concerning device type and configuration, pin size, and geometry. Biomechanical studies deployed various methods to assess injury displacement, deformation, stiffness, and motion. Thereby, loading protocols differed and inconsistent definitions of failure were determined. Measurement techniques applied in biomechanical test setups included strain gauges, force transducers, and motion tracking techniques. DISCUSSION AND CONCLUSION: An ideal fixation method should be safe, stable, non-obstructive, and have low complication rates. Although biomechanical testing should ensure that the load applied during testing is representative of a physiological load, a high degree of variability was found in the current literature in both the loading and measurement equipment. The lack of a standardised test design for fixation constructs in pelvic injuries across the studies challenges comparisons between them. When interpreting the results of biomechanical studies, it seems crucial to consider the limitations in cross-study comparability, with implications on their applicability to the clinical setting.
Assuntos
Fraturas Ósseas , Ossos Pélvicos , Humanos , Fenômenos Biomecânicos , Fixadores Externos , Fixação de Fratura/métodos , Ossos Pélvicos/cirurgiaRESUMO
BACKGROUND: Precise positioning of the acetabular component during total hip replacement is the key to achieving optimal implant function and ensuring long-term patient comfort. However, different anatomical variations, degenerative changes, dysplasia, and other diseases make it difficult. In this study, we discuss a method based on the three-dimensional direction of the transverse ligament, predicting native acetabular anteversion with higher accuracy. METHODS: Angular positions of the acetabulum and direction of the transverse ligament were automatically calculated from routine computed tomography data of 270 patients using a registration algorithm. The relationship between acetabular angles and ligament direction and their relationship with sex, age, and pelvic tilt were sought. These relationships were then modelled using multilinear regression. RESULTS: Including the direction of the transverse ligament in the sagittal and transverse planes as a regressor in the multilinear model explained the variation in acetabular anteversion (R2 = 0.76 for men, R2 = 0.63 for women; standard deviation in prediction: men, 3.92° and women, 4.00°). CONCLUSIONS: The results indicate that the ligament was suitable as a guidance structure almost insensitive to the ligament in the sagittal and transverse planes must be considered. Estimation based on the direction in only 1 plane was not sufficiently accurate. The operative acetabular inclination was not correlated with the direction of the ligament. The correlations were higher in men than in women.
RESUMO
Material properties of soft-tissue samples are often derived through uniaxial tensile testing. For engineering materials, testing parameters (e.g., sample geometries and clamping conditions) are described by international standards; for biological tissues, such standards do not exist. To investigate what testing parameters have been reported for tensile testing of human soft-tissue samples, a systematic review of the literature was performed using PRISMA guidelines. Soft tissues are described as anisotropic and/or hyperelastic. Thus, we explored how the retrieved parameters compared against standards for engineering materials of similar characteristics. All research articles published in English, with an Abstract, and before 1 January 2023 were retrieved from databases of PubMed, Web of Science, and BASE. After screening of articles based on search terms and exclusion criteria, a total 1,096 articles were assessed for eligibility, from which 361 studies were retrieved and included in this review. We found that a non-tapered shape is most common (209 of 361), followed by a tapered sample shape (92 of 361). However, clamping conditions varied and were underreported (156 of 361). As a preliminary attempt to explore how the retrieved parameters might influence the stress distribution under tensile loading, a pilot study was performed using finite element analysis (FEA) and constitutive modeling for a clamped sample of little or no fiber dispersion. The preliminary FE simulation results might suggest the hypothesis that different sample geometries could have a profound influence on the stress-distribution under tensile loading. However, no conclusions can be drawn from these simulations, and future studies should involve exploring different sample geometries under different computational models and sample parameters (such as fiber dispersion and clamping effects). Taken together, reporting and choice of testing parameters remain as challenges, and as such, recommendations towards standard reporting of uniaxial tensile testing parameters for human soft tissues are proposed.
RESUMO
Mineralized tissues, such as bones or teeth, are essential structures of all vertebrates. They enable rapid movement, protection, and food processing, in addition to providing physiological functions. Although the development, regeneration, and pathogenesis of teeth and bones have been intensely studied, there is currently no tool to accurately follow the dynamics of growth and healing of these vital tissues in space and time. Here, we present the BEE-ST (Bones and tEEth Spatio-Temporal growth monitoring) approach, which allows precise quantification of development, regeneration, remodeling, and healing in any type of calcified tissue across different species. Using mouse teeth as model the turnover rate of continuously growing incisors was quantified, and role of hard/soft diet on molar root growth was shown. Furthermore, the dynamics of bones and teeth growth in lizards, frogs, birds, and zebrafish was uncovered. This approach represents an effective, highly reproducible, and versatile tool that opens up diverse possibilities in developmental biology, bone and tooth healing, tissue engineering, and disease modeling.
Assuntos
Dente , Peixe-Zebra , Camundongos , Animais , Dente/fisiologia , Raiz Dentária , Osso e Ossos , Desenvolvimento ÓsseoRESUMO
BACKGROUND: The spatially varying mechanical properties in finite element models of bone are most often derived from bone density data obtained via quantitative computed tomography. The key step is to accurately and efficiently map the density given in voxels to the finite element mesh. METHODS: The density projection is first formulated in least-squares terms and then discretized using a continuous and discontinuous variant of the finite element method. Both discretization variants are compared with the nodal and element approaches known from the literature. FINDINGS: In terms of accuracy in the L2 norm, energy distance and efficiency, the discontinuous zero-order variant appears to be the most advantageous. The proposed variant sufficiently preserves the spectrum of density at the edges, while keeping computational cost low. INTERPRETATION: The continuous finite element method is analogous to the nodal formulation in the literature, while the discontinuous finite element method is analogous to the element formulation. The two variants differ in terms of implementation, computational cost and ability to preserve the density spectrum. These differences cannot be described and measured by known indirect methods from the literature.
Assuntos
Osso e Ossos , Tomografia Computadorizada por Raios X , Densidade Óssea , Osso e Ossos/diagnóstico por imagem , Análise de Elementos Finitos , Humanos , Tomografia Computadorizada por Raios X/métodosRESUMO
A new metric for the quantitative and qualitative evaluation of bone stiffness is introduced. It is based on the spectral decomposition of stiffness matrix computed with finite element method. The here proposed metric is defined as an amplitude rescaled eigenvalues of stiffness matrix. The metric contains unique information on the principal stiffness of bone and reflects both bone shape and material properties. The metric was compared with anthropometrical measures and was tested for sex sensitivity on pelvis bone. Further, the smallest stiffness of pelvis was computed under a certain loading condition and analyzed with respect to sex and direction. The metric complements anthropometrical measures and provides a unique information about the smallest bone stiffness independent from the loading configuration and can be easily computed by state-of-the-art subject specified finite element algorithms.
Assuntos
Fenômenos Biomecânicos , Osso e Ossos , Fenômenos Mecânicos , Análise Espectral , Algoritmos , Biofísica , Feminino , Análise de Elementos Finitos , Humanos , Masculino , Modelos Teóricos , Análise Espectral/métodosRESUMO
BACKGROUND: The expansion of the cervical vertebrae lamina appears to be crucial to related surgical procedures. The dimensions of the groove influence the strain concentration within the lamina of the vertebra and, thus, the potential success or failure of respective surgical procedure. The aim of this computational study is to clarify both the role of the size of the groove with concern to both the open door and the double door laminoplasty techniques. METHODS: Finite element models were created via computer tomography with varying lamina groove dimensions. Displacements were applied to the models at the open side of the vertebral arch and the vertebral body was constrained prior to movement along all the axes. The maximal opening size measured on the inner side of the lamina and the percentage increase in the initial spinal areas were subsequently analyzed. FINDINGS: The elastic strain concentration value was observed for the groove in all cases, while the maximal principal elastic strain concentration value was observed at the opposite side to the groove cut into the lamina, also in all cases. The maximal area increase related to the 4 mm groove accompanied by the preservation of the ventral cortex of the bone. INTERPRETATION: The study suggested three conclusions a) the wider the groove, the greater is the opening potential, b) the maximal opening size following laminoplasty is not dependent on the depth of the bone cut for this type of groove, c) no benefit accrues in terms of the opening size following the cutting of a supplementary groove at the beginning of the lamina.
Assuntos
Laminoplastia , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/cirurgia , Humanos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X , Resultado do TratamentoRESUMO
Multi jet fusion (MJF) technology has proven its significance in recent years as this technology has continually increased its market share. Recently, polypropylene (PP) was introduced by Hewlett-Packard for the given technology. To our knowledge, little is known about the mechanical properties of polypropylene processed by MJF technology. During this study, standardised specimens were printed under all of the major orientations of the machine's build space. Each of these orientations were represented by five samples. The specimens then underwent tensile, bending and Charpy impact tests to analyse their mechanical properties. The structural analysis was conducted to determine whether PP powder may be reused within the MJF process. The mechanical tests showed that the orientation of the samples significantly influences their mechanical response and must be carefully chosen to obtain the optimal mechanical properties of PP samples. We further showed that PP powder may be reused as the MJF process does not significantly alter its thermal and structural properties.
RESUMO
BACKGROUND AND OBJECTIVE: Capturing the population variability of bone properties is of paramount importance to biomedical engineering. The aim of the present paper is to describe variability and correlations in bone mineral density with a spatial random field inferred from routine computed tomography data. METHODS: Random fields were simulated by transforming pairwise uncorrelated Gaussian random variables into correlated variables through the spectral decomposition of an age-detrended correlation matrix. The validity of the random field model was demonstrated in the spatiotemporal analysis of bone mineral density. The similarity between the computed tomography samples and those generated via random fields was analyzed with the energy distance metric. RESULTS: The random field of bone mineral density was found to be approximately Gaussian/slightly left-skewed/strongly right-skewed at various locations. However, average bone density could be simulated well with the proposed Gaussian random field for which the energy distance, i.e., a measure that quantifies discrepancies between two distribution functions, is convergent with respect to the number of correlation eigenpairs. CONCLUSIONS: The proposed random field model allows the enhancement of computational biomechanical models with variability in bone mineral density, which could increase the usability of the model and provides a step forward in in-silico medicine.
Assuntos
Densidade Óssea , Osso e Ossos , Tomografia Computadorizada por Raios XRESUMO
This article focuses on the problem of maximal compliance design of a hyper-elastic solid with the optimal design of human skin grafts as the application in mind. The solution method is a phasefield-based topology optimization method that supposes multiple local phasefields and a minimum distance constraint in order to prevent the phasefields from merging. Consequently, structurally disintegrating solutions such as by the coalescence of voids can be prevented. The method is used to find an optimal graft meshing pattern for a sample that is subjected to a biaxial extension of up to 150%, which corresponds to an expansion ratio of 1 : 2.25. Three prospective unitcell solutions that exhibit meta-material behavior are proposed for a periodic graft pattern. The results are a step toward improving the skin graft meshing efficiency. This work does not cover experimental validation.
Assuntos
Transplante de Pele , Pele , Humanos , Estudos ProspectivosRESUMO
The purpose of the present study was to describe the structural density and geometry of the bone, as well as its sensitivity to the resolution of finite element discretisation. The study introduces a novel way to validate biomechanical model of the bone by experimental modal analysis. The structural density and geometry of the model was obtained from a composite bone. A detailed investigation of the weight dependence of the bone on the mesh resolution was performed to obtain the best match with the real weight of the tested bone. The computational model was compared with the experimental results obtained from the modal analysis. The overall changes of the modal properties and bone weight in the model caused by different mesh resolutions and order of approximation were below 10%, despite the bone was modelled with simple isotropic material properties. The experimental modal analysis shows a great potential to be a robust verification tool of computational biomechanical models because it provides boundary conditions-free results. The sensitivity analysis revealed that the linear approximation of the density field is not suitable for the modelling of the modal response of composite bone.
Assuntos
Simulação por Computador , Ossos Pélvicos/anatomia & histologia , Fenômenos Biomecânicos , Análise de Elementos Finitos , Humanos , Modelos Lineares , Tamanho do Órgão , Ossos Pélvicos/diagnóstico por imagem , Reprodutibilidade dos Testes , Estresse Mecânico , Tomografia Computadorizada por Raios XRESUMO
The balanced initial fixation of an implant makes up a crucial condition for its long-term survival. However, the quantification of initial fixation is no easy task and, to date, only qualitative assessments can be made. Although the concept of measuring fixation by means of vibration analysis is already widely used in dental implantology, the rigorous application of this method for the assessment of the fixation of femoral and acetabular components remains a challenge. Moreover, most studies on this subject have tended to focus solely on the femoral stem even though acetabular cup fixation is also important and even more difficult with respect to qualitative measurement. This study describes a comprehensive experiment aimed at assessing acetabular cup fixation. Fixation is expressed in terms of the impact force and polar gap variables, which are correlated with the modal properties of the acetabular implant during the various insertion stages. The predictive capabilities of modal frequencies and frequency functions were investigated by means of surrogate models based on the Gaussian process and functional principal component analysis. The prediction accuracy of the proposed models was in the range 82-94%. The results indicate that natural frequencies, reduced frequency, impact force and polar gap features provide great potential in terms of the prediction of implant fixation.
Assuntos
Cabeça do Fêmur , Fixação Interna de Fraturas , Fixadores Internos , Modelos Biológicos , Ossos Pélvicos , Feminino , Cabeça do Fêmur/patologia , Cabeça do Fêmur/fisiopatologia , Humanos , Masculino , Ossos Pélvicos/patologia , Ossos Pélvicos/fisiopatologia , VibraçãoRESUMO
OBJECTIVES: The number of turns at the end of a wire closure is not described or discussed in any cardiosurgical guidelines. The hands-on experience of the surgeon plays a significant role. The aim of this work was to clarify the relationship between the number of turns of the suture and the resulting strength of the sternal fixation. METHODS: The study was performed in 2 independent steps. The first step was a finite element simulation, where the stress and strain distribution of the sternal fixation was observed. The second step included the experimental set-up and the statistical evaluation of the results. RESULTS: Our study showed that the failure force rose linearly as the number of turns increased. The lowest average measured force was 370 N (3 turns); the highest was 430 N (7 turns). The failure modes were either untwisting of the wires or rupture of the closure, which is controlled by the number of turns. As the number of turns increases, superficial cracks can occur. CONCLUSIONS: Based on our results, the 5-turn option is the best solution for the closure. The failure force is still double the value reported in the literature, so there is a high safety margin for failure. The failure mode is untwisting; hence, no unexpected fracture can occur, and there is still an elastic core in the cross-section of the wire.
Assuntos
Fios Ortopédicos , Esterno/cirurgia , Técnicas de Sutura , Análise de Falha de Equipamento , Humanos , Teste de Materiais , Modelos Teóricos , Maleabilidade , Suturas , Resistência à TraçãoRESUMO
INTRODUCTION: The study investigates the potential for producing medical components via Selective Laser Melting technology (SLM). The material tested consisted of the biocompatible titanium alloy Ti6Al4V. The research involved the testing of laboratory specimens produced using SLM technology both in vitro and for surface roughness. The aim of the research was to clarify whether SLM technology affects the cytocompatibility of implants and, thus, whether SLM implants provide suitable candidates for medical use following zero or minimum post-fabrication treatment. Areas covered: The specimens were tested with an osteoblast cell line and, subsequently, two post-treatment processes were compared: non-treated (as-fabricated) and glass-blasted. Interactions with MG-63 cells were evaluated by means of metabolic MTT assay and microscope techniques (scanning electron microscopy, fluorescence microscopy). Surface roughness was observed on both the non-treated and glass-blasted SLM specimens. Expert Commentary: The research concluded that the glass-blasting of SLM Ti6Al4V significantly reduces surface roughness. The arithmetic mean roughness Ra was calculated at 3.4 µm for the glass-blasted and 13.3 µm for the non-treated surfaces. However, the results of in vitro testing revealed that the non-treated surface was better suited to cell growth.
Assuntos
Lasers , Teste de Materiais , Osteoblastos/metabolismo , Titânio/farmacologia , Ligas , Linhagem Celular , Humanos , Osteoblastos/citologia , Propriedades de SuperfícieRESUMO
OBJECTIVES: The technique of meshed skin grafting is known since 1960s. It was shown that there is a difference between the declared and real expansion ratio of the skin meshed graft. We hypothesize that the orientation of the Langer's lines in a split thickness skin graft is a key parameter in the resulting expansion ratio. METHODS: The skin graft meshing process was analyzed in two steps. In the first step, ex vivo uniaxial tests of human skin were performed. This served as an input for the constitutive model used for numerical simulations. In the second step, finite element analyses were performed so that stress distributions and expansion ratios could be determined. RESULTS: It was shown that peaks of true stress tended to be concentrated around the vertex of the mesh pattern region for all cases. The declared expansion was impossible to obtain for all expansion ratios having the meshing incision perpendicular to the Langer's lines. The highest difference between declared and real expansion ratio reaches 37%. CONCLUSIONS: With regard to literature dealing with expansion of skin grafts by meshing, a high scatter amongst data results is observed. This finding was also explained by our research, demonstrating the significance of Langer's lines and their relative orientation to the direction of meshing.