Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 210(11): 1641-1652, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37058108

RESUMO

IL-6 family members contribute to host defense through the stimulation of acute-phase signaling, hematopoiesis, immune reactions, and regenerative processes. To investigate essential mechanisms that are linked toward a constitutively activated gp130 signaling, we generated and characterized a mouse model that reflects a constitutive and cytokine-independent activation of JAK/STAT3 signaling by Lgp130 in CD4- and CD8-positive T cells. Lgp130 is an engineered form of gp130 in which dimerization and activation are forced by a leucine zipper. T cell-specific Lgp130 activation resulted in massive phenotypical abnormalities, including splenomegaly, lymphadenopathy, and an upregulation of innate immune system components shown by hyperinflammatory signatures in several organs. Moreover, T cell-restricted expression of Lgp130 resulted in increased numbers of cytotoxic and regulatory T cells, especially in lymph nodes. Consistent with this, we found an elevated platelet production and increase in megakaryocytes in the spleen and bone marrow that are causative for an acute thrombocytosis accompanied by anemia. Due to a shortened life span of T cell-specific Lgp130 mice, we could also show that next to an overall increase in regulatory cell-cycle genes, an activation of p53 and increased expression of p21 provide evidence for a senescence-like phenotype. Together, these data suggest that T cell-restricted gp130 activation is not only involved in autoimmune processes but also in senescence-associated aging. Therefore, Lgp130 expression in T cells might be a suitable model to study inflammation and disease.


Assuntos
Senilidade Prematura , Animais , Camundongos , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/metabolismo , Hematopoese , Baço/metabolismo , Fator de Transcrição STAT3/metabolismo
2.
J Med Genet ; 59(9): 878-887, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34656997

RESUMO

BACKGROUND: Human coenzyme Q4 (COQ4) is essential for coenzyme Q10 (CoQ10) biosynthesis. Pathogenic variants in COQ4 cause childhood-onset neurodegeneration. We aimed to delineate the clinical spectrum and the cellular consequences of COQ4 deficiency. METHODS: Clinical course and neuroradiological findings in a large cohort of paediatric patients with COQ4 deficiency were analysed. Functional studies in patient-derived cell lines were performed. RESULTS: We characterised 44 individuals from 36 families with COQ4 deficiency (16 newly described). A total of 23 different variants were identified, including four novel variants in COQ4. Correlation analyses of clinical and neuroimaging findings revealed three disease patterns: type 1: early-onset phenotype with neonatal brain anomalies and epileptic encephalopathy; type 2: intermediate phenotype with distinct stroke-like lesions; and type 3: moderate phenotype with non-specific brain pathology and a stable disease course. The functional relevance of COQ4 variants was supported by in vitro studies using patient-derived fibroblast lines. Experiments revealed significantly decreased COQ4 protein levels, reduced levels of cellular CoQ10 and elevated levels of the metabolic intermediate 6-demethoxyubiquinone. CONCLUSION: Our study describes the heterogeneous clinical presentation of COQ4 deficiency and identifies phenotypic subtypes. Cell-based studies support the pathogenic characteristics of COQ4 variants. Due to the insufficient clinical response to oral CoQ10 supplementation, alternative treatment strategies are warranted.


Assuntos
Proteínas Mitocondriais , Ubiquinona , Linhagem Celular , Criança , Humanos , Recém-Nascido , Proteínas Mitocondriais/genética , Neuroimagem , Fenótipo , Ubiquinona/genética , Ubiquinona/metabolismo
3.
Basic Res Cardiol ; 117(1): 48, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36205817

RESUMO

Although p38 MAP Kinase α (p38 MAPKα) is generally accepted to play a central role in the cardiac stress response, to date its function in maladaptive cardiac hypertrophy is still not unambiguously defined. To induce a pathological type of cardiac hypertrophy we infused angiotensin II (AngII) for 2 days via osmotic mini pumps in control and tamoxifen-inducible, cardiomyocyte (CM)-specific p38 MAPKα KO mice (iCMp38αKO) and assessed cardiac function by echocardiography, complemented by transcriptomic, histological, and immune cell analysis. AngII treatment after inactivation of p38 MAPKα in CM results in left ventricular (LV) dilatation within 48 h (EDV: BL: 83.8 ± 22.5 µl, 48 h AngII: 109.7 ± 14.6 µl) and an ectopic lipid deposition in cardiomyocytes, reflecting a metabolic dysfunction in pressure overload (PO). This was accompanied by a concerted downregulation of transcripts for oxidative phosphorylation, TCA cycle, and fatty acid metabolism. Cardiac inflammation involving neutrophils, macrophages, B- and T-cells was significantly enhanced. Inhibition of adipose tissue lipolysis by the small molecule inhibitor of adipocytetriglyceride lipase (ATGL) Atglistatin reduced cardiac lipid accumulation by 70% and neutrophil infiltration by 30% and went along with an improved cardiac function. Direct targeting of neutrophils by means of anti Ly6G-antibody administration in vivo led to a reduced LV dilation in iCMp38αKO mice and an improved systolic function (EF: 39.27 ± 14%). Thus, adipose tissue lipolysis and CM lipid accumulation augmented cardiac inflammation in iCMp38αKO mice. Neutrophils, in particular, triggered the rapid left ventricular dilatation. We provide the first evidence that p38 MAPKα acts as an essential switch in cardiac adaptation to PO by mitigating metabolic dysfunction and inflammation. Moreover, we identified a heart-adipose tissue-immune cell crosstalk, which might serve as new therapeutic target in cardiac pathologies.


Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Tecido Adiposo/metabolismo , Angiotensina II/metabolismo , Animais , Cardiomegalia/metabolismo , Ácidos Graxos/metabolismo , Inflamação/metabolismo , Lipase/metabolismo , Lipase/uso terapêutico , Lipídeos/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Neutrófilos/metabolismo , Tamoxifeno/metabolismo , Tamoxifeno/uso terapêutico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/uso terapêutico
4.
Hepatology ; 74(1): 411-427, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33369745

RESUMO

BACKGROUND AND AIMS: Thrombocytopenia has been described in most patients with acute and chronic liver failure. Decreased platelet production and decreased half-life of platelets might be a consequence of low levels of thrombopoietin (TPO) in these patients. Platelet production is tightly regulated to avoid bleeding complications after vessel injury and can be enhanced under elevated platelet destruction as observed in liver disease. Thrombopoietin (TPO) is the primary regulator of platelet biogenesis and supports proliferation and differentiation of megakaryocytes. APPROACH AND RESULTS: Recent work provided evidence for the control of TPO mRNA expression in liver and bone marrow (BM) by scanning circulating platelets. The Ashwell-Morell receptor (AMR) was identified to bind desialylated platelets to regulate hepatic thrombopoietin (TPO) production by Janus kinase (JAK2)/signal transducer and activator of transcription (STAT3) activation. Two-thirds partial hepatectomy (PHx) was performed in mice. Platelet activation and clearance by AMR/JAK2/STAT3 signaling and TPO production were analyzed at different time points after PHx. Here, we demonstrate that PHx in mice led to thrombocytopenia and platelet activation defects leading to bleeding complications, but unaltered arterial thrombosis, in these mice. Platelet counts were rapidly restored by up-regulation and crosstalk of the AMR and the IL-6 receptor (IL-6R) to induce JAK2-STAT3-TPO activation in the liver, accompanied by an increased number of megakaryocytes in spleen and BM before liver was completely regenerated. CONCLUSIONS: The AMR/IL-6R-STAT3-TPO signaling pathway is an acute-phase response to liver injury to reconstitute hemostasis. Bleeding complications were attributable to thrombocytopenia and platelet defects induced by elevated PGI2 , NO, and bile acid plasma levels early after PHx that might also be causative for the high mortality in patients with liver disease.


Assuntos
Hepatectomia/efeitos adversos , Trombocitopenia/sangue , Trombopoetina/biossíntese , Animais , Receptor de Asialoglicoproteína/genética , Receptor de Asialoglicoproteína/metabolismo , Modelos Animais de Doenças , Humanos , Janus Quinase 2/metabolismo , Camundongos , Camundongos Knockout , Contagem de Plaquetas , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo , Fator de Transcrição STAT3/metabolismo , Organismos Livres de Patógenos Específicos , Trombocitopenia/etiologia , Trombopoetina/sangue
5.
Mov Disord ; 37(10): 2147-2153, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36047608

RESUMO

BACKGROUND: COQ4 codes for a mitochondrial protein required for coenzyme Q10 (CoQ10 ) biosynthesis. Autosomal recessive COQ4-associated CoQ10 deficiency leads to an early-onset mitochondrial multi-organ disorder. METHODS: In-house exome and genome datasets (n = 14,303) were screened for patients with bi-allelic variants in COQ4. Work-up included clinical characterization and functional studies in patient-derived cell lines. RESULTS: Six different COQ4 variants, three of them novel, were identified in six adult patients from four different families. Three patients had a phenotype of hereditary spastic paraparesis, two sisters showed a predominant cerebellar ataxia, and one patient had mild signs of both. Studies in patient-derived fibroblast lines revealed significantly reduced amounts of COQ4 protein, decreased CoQ10 concentrations, and elevated levels of the metabolic intermediate 6-demethoxyubiquinone. CONCLUSION: We report bi-allelic variants in COQ4 causing an adult-onset ataxia-spasticity spectrum phenotype and a disease course much milder than previously reported. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Ataxia Cerebelar , Proteínas Mitocondriais , Ubiquinona , Ataxia/genética , Ataxia Cerebelar/genética , Humanos , Doenças Mitocondriais , Proteínas Mitocondriais/genética , Espasticidade Muscular , Debilidade Muscular , Mutação/genética , Ubiquinona/deficiência , Ubiquinona/genética , Ubiquinona/metabolismo
6.
Biol Chem ; 402(9): 1047-1062, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34049433

RESUMO

Bile acids perform vital functions in the human liver and are the essential component of bile. It is therefore not surprising that the biology of bile acids is extremely complex, regulated on different levels, and involves soluble and membrane receptors as well as transporters. Hereditary disorders of these proteins manifest in different pathophysiological processes that result in liver diseases of varying severity. In this review, we summarize our current knowledge of the physiology and pathophysiology of bile acids with an emphasis on recently established analytical approaches as well as the molecular mechanisms that underlie signaling and transport of bile acids. In this review, we will focus on ABC transporters of the canalicular membrane and their associated diseases. As the G protein-coupled receptor, TGR5, receives increasing attention, we have included aspects of this receptor and its interaction with bile acids.


Assuntos
Hepatopatias , Humanos , Fígado
7.
Gut ; 69(1): 133-145, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31409605

RESUMO

OBJECTIVE: The Fragile X mental retardation (FMR) syndrome is a frequently inherited intellectual disability caused by decreased or absent expression of the FMR protein (FMRP). Lack of FMRP is associated with neuronal degradation and cognitive dysfunction but its role outside the central nervous system is insufficiently studied. Here, we identify a role of FMRP in liver disease. DESIGN: Mice lacking Fmr1 gene expression were used to study the role of FMRP during tumour necrosis factor (TNF)-induced liver damage in disease model systems. Liver damage and mechanistic studies were performed using real-time PCR, Western Blot, staining of tissue sections and clinical chemistry. RESULTS: Fmr1null mice exhibited increased liver damage during virus-mediated hepatitis following infection with the lymphocytic choriomeningitis virus. Exposure to TNF resulted in severe liver damage due to increased hepatocyte cell death. Consistently, we found increased caspase-8 and caspase-3 activation following TNF stimulation. Furthermore, we demonstrate FMRP to be critically important for regulating key molecules in TNF receptor 1 (TNFR1)-dependent apoptosis and necroptosis including CYLD, c-FLIPS and JNK, which contribute to prolonged RIPK1 expression. Accordingly, the RIPK1 inhibitor Necrostatin-1s could reduce liver cell death and alleviate liver damage in Fmr1null mice following TNF exposure. Consistently, FMRP-deficient mice developed increased pathology during acute cholestasis following bile duct ligation, which coincided with increased hepatic expression of RIPK1, RIPK3 and phosphorylation of MLKL. CONCLUSIONS: We show that FMRP plays a central role in the inhibition of TNF-mediated cell death during infection and liver disease.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/fisiologia , Hepatite Viral Animal/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Infecções por Arenaviridae/imunologia , Infecções por Arenaviridae/patologia , Linfócitos T CD8-Positivos/imunologia , Morte Celular/efeitos dos fármacos , Morte Celular/imunologia , Morte Celular/fisiologia , Células Cultivadas , Colestase/imunologia , Colestase/metabolismo , Colestase/patologia , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Hepatite Viral Animal/patologia , Hepatite Viral Animal/prevenção & controle , Hepatócitos/patologia , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Indóis/farmacologia , Indóis/uso terapêutico , Vírus da Coriomeningite Linfocítica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia
8.
FASEB J ; 33(10): 11507-11527, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31345061

RESUMO

We previously reported that inactivation of the transmembrane taurine transporter (TauT or solute carrier 6a6) causes early retinal degeneration in mice. Compatible with taurine's indispensability for cell volume homeostasis, protein stabilization, cytoprotection, antioxidation, and immuno- and neuromodulation, mice develop multisystemic dysfunctions (hearing loss; liver fibrosis; and behavioral, heart, and skeletal muscle abnormalities) later on. Here, by genetic, cell biologic, in vivo1H-magnetic resonance spectroscopy and molecular dynamics simulation studies, we conducted in-depth characterization of a novel disorder: human TAUT deficiency. Loss of TAUT function due to a homozygous missense mutation caused panretinal degeneration in 2 brothers. TAUTp.A78E still localized in the plasma membrane but is predicted to impact structural stabilization. 3H-taurine uptake by peripheral blood mononuclear cells was reduced by 95%, and taurine levels were severely reduced in plasma, skeletal muscle, and brain. Extraocular dysfunctions were not yet detected, but significantly increased urinary excretion of 8-oxo-7,8-dihydroguanosine indicated generally enhanced (yet clinically unapparent) oxidative stress and RNA oxidation, warranting continuous broad surveillance.-Preising, M. N., Görg, B., Friedburg, C., Qvartskhava, N., Budde, B. S., Bonus, M., Toliat, M. R., Pfleger, C., Altmüller, J., Herebian, D., Beyer, M., Zöllner, H. J., Wittsack, H.-J., Schaper, J., Klee, D., Zechner, U., Nürnberg, P., Schipper, J., Schnitzler, A., Gohlke, H., Lorenz, B., Häussinger, D., Bolz, H. J. Biallelic mutation of human SLC6A6 encoding the taurine transporter TAUT is linked to early retinal degeneration.


Assuntos
Glicoproteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Mutação de Sentido Incorreto/genética , Degeneração Retiniana/metabolismo , Taurina/metabolismo , Transporte Biológico/fisiologia , Membrana Celular/metabolismo , Células Cultivadas , Guanosina/análogos & derivados , Guanosina/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Músculo Esquelético/metabolismo , Estresse Oxidativo/fisiologia
9.
J Inherit Metab Dis ; 43(5): 981-993, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32118306

RESUMO

Classical organic acidemias (OAs) result from defective mitochondrial catabolism of branched-chain amino acids (BCAAs). Abnormal mitochondrial function relates to oxidative stress, ectopic lipids and insulin resistance (IR). We investigated whether genetically impaired function of mitochondrial BCAA catabolism associates with cardiometabolic risk factors, altered liver and muscle energy metabolism, and IR. In this case-control study, 31 children and young adults with propionic acidemia (PA), methylmalonic acidemia (MMA) or isovaleric acidemia (IVA) were compared with 30 healthy young humans using comprehensive metabolic phenotyping including in vivo 31 P/1 H magnetic resonance spectroscopy of liver and skeletal muscle. Among all OAs, patients with PA exhibited abdominal adiposity, IR, fasting hyperglycaemia and hypertriglyceridemia as well as increased liver fat accumulation, despite dietary energy intake within recommendations for age and sex. In contrast, patients with MMA more frequently featured higher energy intake than recommended and had a different phenotype including hepatomegaly and mildly lower skeletal muscle ATP content. In skeletal muscle of patients with PA, slightly lower inorganic phosphate levels were found. However, hepatic ATP and inorganic phosphate concentrations were not different between all OA patients and controls. In patients with IVA, no abnormalities were detected. Impaired BCAA catabolism in PA, but not in MMA or IVA, was associated with a previously unrecognised, metabolic syndrome-like phenotype with abdominal adiposity potentially resulting from ectopic lipid storage. These findings suggest the need for early cardiometabolic risk factor screening in PA.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/sangue , Aminoácidos de Cadeia Ramificada/deficiência , Aminoácidos de Cadeia Ramificada/metabolismo , Isovaleril-CoA Desidrogenase/deficiência , Acidemia Propiônica/sangue , Adolescente , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Distribuição da Gordura Corporal , Fatores de Risco Cardiometabólico , Estudos de Casos e Controles , Criança , Análise por Conglomerados , Metabolismo Energético , Feminino , Humanos , Resistência à Insulina , Isovaleril-CoA Desidrogenase/sangue , Fígado/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Músculo Esquelético/metabolismo , Acidemia Propiônica/diagnóstico , Adulto Jovem
10.
Am J Hum Genet ; 99(4): 894-902, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27616477

RESUMO

To safeguard the cell from the accumulation of potentially harmful metabolic intermediates, specific repair mechanisms have evolved. APOA1BP, now renamed NAXE, encodes an epimerase essential in the cellular metabolite repair for NADHX and NADPHX. The enzyme catalyzes the epimerization of NAD(P)HX, thereby avoiding the accumulation of toxic metabolites. The clinical importance of the NAD(P)HX repair system has been unknown. Exome sequencing revealed pathogenic biallelic mutations in NAXE in children from four families with (sub-) acute-onset ataxia, cerebellar edema, spinal myelopathy, and skin lesions. Lactate was elevated in cerebrospinal fluid of all affected individuals. Disease onset was during the second year of life and clinical signs as well as episodes of deterioration were triggered by febrile infections. Disease course was rapidly progressive, leading to coma, global brain atrophy, and finally to death in all affected individuals. NAXE levels were undetectable in fibroblasts from affected individuals of two families. In these fibroblasts we measured highly elevated concentrations of the toxic metabolite cyclic-NADHX, confirming a deficiency of the mitochondrial NAD(P)HX repair system. Finally, NAD or nicotinic acid (vitamin B3) supplementation might have therapeutic implications for this fatal disorder.


Assuntos
Proteínas de Transporte/genética , Doenças Metabólicas/genética , Mutação , NAD/análogos & derivados , Doenças do Sistema Nervoso/genética , Racemases e Epimerases/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Pré-Escolar , Evolução Fatal , Feminino , Fibroblastos , Humanos , Lactente , Masculino , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , NAD/metabolismo , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Neuroimagem , Anormalidades da Pele/genética , Anormalidades da Pele/patologia
11.
Mol Genet Metab ; 123(3): 289-291, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29246431

RESUMO

Primary disorders of the human coenzyme Q10 (CoQ10) biosynthesis pathway are a known cause of severe pediatric diseases. So far, oral administration of CoQ10 is the only treatment strategy for affected individuals. However, the real benefit of CoQ10 supplementation remains questionable and clinical studies regarding efficiency are lacking. Here we provide an outlook on novel treatment approaches using CoQ precursor compounds. These metabolic bypass strategies might be a promising alternative for oral CoQ10 supplementation regimens.


Assuntos
Ataxia/tratamento farmacológico , Hidroxibenzoatos/uso terapêutico , Doenças Mitocondriais/tratamento farmacológico , Debilidade Muscular/tratamento farmacológico , Ubiquinona/análogos & derivados , Ubiquinona/deficiência , Animais , Apoptose/efeitos dos fármacos , Ataxia/genética , Ataxia/patologia , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Modelos Animais de Doenças , Humanos , Hidroxibenzoatos/farmacologia , Camundongos , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Debilidade Muscular/genética , Debilidade Muscular/patologia , Pirimidinas/metabolismo , Solubilidade , Resultado do Tratamento , Ubiquinona/biossíntese , Ubiquinona/genética , Ubiquinona/metabolismo , Ubiquinona/uso terapêutico , Vitaminas/uso terapêutico
12.
Proc Natl Acad Sci U S A ; 112(17): 5521-6, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25870278

RESUMO

Urea cycle defects and acute or chronic liver failure are linked to systemic hyperammonemia and often result in cerebral dysfunction and encephalopathy. Although an important role of the liver in ammonia metabolism is widely accepted, the role of ammonia metabolizing pathways in the liver for maintenance of whole-body ammonia homeostasis in vivo remains ill-defined. Here, we show by generation of liver-specific Gln synthetase (GS)-deficient mice that GS in the liver is critically involved in systemic ammonia homeostasis in vivo. Hepatic deletion of GS triggered systemic hyperammonemia, which was associated with cerebral oxidative stress as indicated by increased levels of oxidized RNA and enhanced protein Tyr nitration. Liver-specific GS-deficient mice showed increased locomotion, impaired fear memory, and a slightly reduced life span. In conclusion, the present observations highlight the importance of hepatic GS for maintenance of ammonia homeostasis and establish the liver-specific GS KO mouse as a model with which to study effects of chronic hyperammonemia.


Assuntos
Glutamato-Amônia Ligase/metabolismo , Hiperamonemia/enzimologia , Fígado/enzimologia , Animais , Comportamento Animal , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Marcação de Genes , Glutamato-Amônia Ligase/genética , Hiperamonemia/genética , Hiperamonemia/patologia , Hiperamonemia/fisiopatologia , Fígado/metabolismo , Fígado/fisiopatologia , Locomoção , Memória , Camundongos , Camundongos Knockout , Estresse Oxidativo/genética
13.
Mol Genet Metab ; 121(3): 216-223, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28552678

RESUMO

Coenzyme Q10 (CoQ10) is an essential cofactor of the mitochondrial oxidative phosphorylation (OXPHOS) system and its deficiency has important implications for several inherited metabolic disorders of childhood. The biosynthesis of CoQ10 is a complicated process, which involves at least 12 different enzymes. One of the metabolic intermediates that are formed during CoQ10 biosynthesis is the molecule 6-demethoxyubiquinone (6-DMQ). This CoQ precursor is processed at the level of COQ7 and COQ9. We selected this metabolite as a marker substance for metabolic analysis of cell lines with inherited genetic defects (COQ2, COQ4, COQ7 and COQ9) or siRNA knockdown in CoQ biosynthesis enzymes using ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). In COQ4, COQ7 and COQ9 deficient cell lines, we detected significantly elevated levels of 6-DMQ. This suggests a functional interplay of these proteins. However, additional siRNA studies demonstrated that elevated 6-DMQ levels are not an exclusive marker of the COQ7/COQ9 enzymatic step of CoQ10 biosynthesis but constitute a more general phenomenon that occurs in disorders impairing the function or stability of the CoQ-synthome. To further investigate the interdependence of CoQ10 biosynthesis enzyme expression, we performed immunoblotting in various cell lines with CoQ10 deficiency, indicating that COQ4, COQ7 and COQ9 protein expression levels are highly regulated depending on the underlying defect. Supplementation of cell lines with synthetic CoQ precursor compounds demonstrated beneficial effects of 2,4-dihydroxybenzoic acid in COQ7 and COQ9 deficiency. Moreover, vanillic acid selectively stimulated CoQ10 biosynthesis and improved cell viability in COQ9 deficiency. However, compounds tested in this study failed to rescue COQ4 deficiency.


Assuntos
Ataxia/metabolismo , Doenças Mitocondriais/metabolismo , Debilidade Muscular/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/deficiência , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Hidroxibenzoatos/farmacologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fosforilação Oxidativa , Espectrometria de Massas em Tandem , Ubiquinona/biossíntese , Ubiquinona/metabolismo , Ácido Vanílico/farmacologia
14.
Gut ; 65(3): 487-501, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26420419

RESUMO

OBJECTIVE: Cholestatic liver diseases in humans as well as bile acid (BA)-feeding and common bile duct ligation (CBDL) in rodents trigger hyperplasia of cholangiocytes within the portal fields. Furthermore, elevation of BA levels enhances proliferation and invasiveness of cholangiocarcinoma (CCA) cells in animal models, thus promoting tumour progression. TGR5 is a G-protein coupled BA receptor, which is highly expressed in cholangiocytes and postulated to mediate the proliferative effects of BA. DESIGN: BA-dependent cholangiocyte proliferation was examined in TGR5-knockout and wild type mice following cholic acid (CA)-feeding and CBDL. TGR5-dependent proliferation and protection from apoptosis was studied in isolated cholangiocytes and CCA cell lines following stimulation with TGR5 ligands and kinase inhibitors. TGR5 expression was analysed in human CCA tissue. RESULTS: Cholangiocyte proliferation was significantly reduced in TGR5-knockout mice in response to CA-feeding and CBDL. Taurolithocholic acid and TGR5-selective agonists induced cholangiocyte proliferation through elevation of reactive oxygen species and cSrc mediated epidermal growth factor receptor transactivation and subsequent Erk1/2 phosphorylation only in wild type but not in TGR5-knockout-derived cells. In human CCA tissue TGR5 was overexpressed and the pathway of TGR5-dependent proliferation via epidermal growth factor receptor and extracellular signal-regulated kinase (ERK)1/2 activation also translated to CCA cell lines. Furthermore, apoptosis was inhibited by TGR5-dependent CD95 receptor serine phosphorylation. CONCLUSIONS: TGR5 is an important mediator of BA-induced cholangiocyte proliferation in vivo and in vitro. Furthermore, TGR5 protects cholangiocytes from death receptor-mediated apoptosis. These mechanisms may protect cholangiocytes from BA toxicity under cholestatic conditions, however, they may trigger proliferation and apoptosis resistance in malignantly transformed cholangiocytes, thus promoting CCA progression.


Assuntos
Ácidos e Sais Biliares/fisiologia , Neoplasias dos Ductos Biliares/metabolismo , Proliferação de Células/fisiologia , Colangiocarcinoma/metabolismo , Ducto Colédoco/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Apoptose/fisiologia , Linhagem Celular Tumoral , Ducto Colédoco/metabolismo , Ducto Colédoco/cirurgia , Humanos , Ligadura , Masculino , Camundongos , Camundongos Knockout , Receptores Acoplados a Proteínas G/deficiência
15.
J Hepatol ; 64(5): 1108-1117, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26708145

RESUMO

BACKGROUND & AIMS: The liver exhibits a unique capacity for regeneration in response to injury. Lymphotoxin-ß receptor (LTßR), a core member of the tumor necrosis factor (TNF)/tumor necrosis factor receptor (TNFR) superfamily is known to play an important role in this process. However, the function of LTßR during pathophysiological alterations and its molecular mechanisms during liver regeneration are so far ill-characterized. METHODS: LTßR(-/-) mice were subjected to 70% hepatectomy and liver regeneration capacity, bile acid profiles, and transcriptome analysis were performed. RESULTS: LTßR(-/-) deficient mice suffered from increased and prolonged liver tissue damage after 70% hepatectomy, accompanied by deregulated bile acid homeostasis. Pronounced differences in the expression patterns of genes relevant for bile acid synthesis and recirculation were observed. LTßR and TNFRp55 share downstream signalling elements. Therefore, LTßR(-/-) mice were treated with etanercept to create mice functionally deficient in both signalling pathways. Strikingly, the combined blockade of TNFRp55 and LTßR signalling leads to complete failure of liver regeneration resulting in death within 24 to 48h after PHx. Transcriptome analysis revealed a marked disparity in gene expression programs in livers of LTßR(-/-) and etanercept-treated LTßR(-/-) vs. wild-type animals after PHx. Murinoglobulin 2 was identified as a significantly differentially regulated gene. CONCLUSIONS: LTßR is essential for efficient liver regeneration and cooperates with TNFRp55 in this process. Differences in survival kinetics strongly suggest distinct functions for these two cytokine receptors in liver regeneration. Failure of TNFR and LTßR signalling renders liver regeneration impossible.


Assuntos
DNA/genética , Regulação da Expressão Gênica , Hepatopatias/genética , Regeneração Hepática/genética , Receptor beta de Linfotoxina/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Chamariz do Fator de Necrose Tumoral/genética , Animais , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Hepatopatias/metabolismo , Hepatopatias/patologia , Receptor beta de Linfotoxina/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Receptores Tipo I de Fatores de Necrose Tumoral/biossíntese , Receptores Chamariz do Fator de Necrose Tumoral/biossíntese
16.
Cell Physiol Biochem ; 38(4): 1500-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27050423

RESUMO

BACKGROUND/AIMS: In nucleated cells, bile acids may activate cation channels subsequently leading to entry of Ca2+. In erythrocytes, increase of cytosolic Ca2+ activity triggers eryptosis, the suicidal death of erythrocytes characterized by phosphatidylserine exposure at the cell surface and cell shrinkage. Eryptosis is triggered by bile duct ligation, an effect partially attributed to conjugated bilirubin. The present study explored, whether bile acids may stimulate eryptosis. METHODS: Phosphatidylserine exposing erythrocytes have been identified utilizing annexin V binding, cell volume estimated from forward scatter, cytosolic Ca2+ activity determined using Fluo-3 fluorescence, and ceramide abundance at the erythrocyte surface utilizing specific antibodies. RESULTS: The exposure of human erythrocytes to glycochenodesoxycholic (GCDC) and taurochenodesoxycholic (TCDC) acid was followed by a significant decrease of forward scatter and significant increase of Fluo-3 fluorescence, ceramide abundance as well as annexin V binding. The effect on annexin V binding was significantly blunted, but not abolished by removal of extracellular Ca2+. CONCLUSION: Bile acids stimulate suicidal cell death, an effect paralleled by and in part due to Ca2+ entry and ceramide. The bile acid induced eryptosis may in turn lead to accelerated clearance of circulating erythrocytes and, thus, may contribute to anemia in cholestatic patients.


Assuntos
Ácidos e Sais Biliares/toxicidade , Eriptose/efeitos dos fármacos , Compostos de Anilina/química , Compostos de Anilina/metabolismo , Cálcio/metabolismo , Células Cultivadas , Ceramidas/metabolismo , Colagogos e Coleréticos/farmacologia , Detergentes/farmacologia , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Citometria de Fluxo , Ácido Glicoquenodesoxicólico/toxicidade , Hemólise/efeitos dos fármacos , Humanos , Fosfatidilserinas/metabolismo , Ácido Tauroquenodesoxicólico/toxicidade , Xantenos/química , Xantenos/metabolismo
18.
Hepatology ; 61(1): 275-84, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25065608

RESUMO

UNLABELLED: Hepatic failure is commonly associated with anemia, which may result from gastrointestinal bleeding, vitamin deficiency, or liver-damaging diseases, such as infection and alcohol intoxication. At least in theory, anemia during hepatic failure may result from accelerated clearance of circulating erythrocytes. Here we show that bile duct ligation (BDL) in mice leads to severe anemia despite increased reticulocyte numbers. Bilirubin stimulated suicidal death of human erythrocytes. Mechanistically, bilirubin triggered rapid Ca(2+) influx, sphingomyelinase activation, formation of ceramide, and subsequent translocation of phosphatidylserine to the erythrocyte surface. Consistent with our in vitro and in vivo findings, incubation of erythrocytes in serum from patients with liver disease induced suicidal death of erythrocytes in relation to their plasma bilirubin concentration. Consistently, patients with hyperbilirubinemia had significantly lower erythrocyte and significantly higher reticulocyte counts compared to patients with low bilirubin levels. CONCLUSION: Bilirubin triggers suicidal erythrocyte death, thus contributing to anemia during liver disease.


Assuntos
Anemia/etiologia , Bilirrubina/sangue , Eritrócitos/fisiologia , Falência Hepática/complicações , Idoso , Animais , Cálcio/metabolismo , Estudos de Casos e Controles , Morte Celular , Feminino , Voluntários Saudáveis , Humanos , Falência Hepática/sangue , Masculino , Camundongos , Pessoa de Meia-Idade , Esfingomielina Fosfodiesterase/metabolismo
19.
Biochem Biophys Res Commun ; 467(2): 389-94, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26427876

RESUMO

ATAD3 (ATPase family AAA domain-containing protein 3) is a mitochondrial protein, which is essential for cell viability and organismal development. ATAD3 has been implicated in several important cellular processes such as apoptosis regulation, respiratory chain function and steroid hormone biosynthesis. Moreover, altered expression of ATAD3 has been associated with several types of cancer. However, the exact mechanisms underlying ATAD3 effects on cellular metabolism remain largely unclear. Here, we demonstrate that Caenorhabditis elegans ATAD-3 is involved in mitochondrial iron and heme homeostasis. Knockdown of atad-3 caused mitochondrial iron- and heme accumulation. This was paralleled by changes in the expression levels of several iron- and heme-regulatory genes as well as an increased heme uptake. In conclusion, our data indicate a regulatory role of C. elegans ATAD-3 in mitochondrial iron and heme metabolism.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Heme/metabolismo , Ferro/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/metabolismo , Compostos Férricos/farmacologia , Regulação da Expressão Gênica , Hemeproteínas/genética , Hemeproteínas/metabolismo , Hemina/metabolismo , Homeostase , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Compostos de Amônio Quaternário/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
20.
Biochim Biophys Acta ; 1832(4): 509-16, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23313579

RESUMO

Dietary fat restriction and increased carbohydrate intake are part of treatment in very-long-chain acyl-CoA dehydrogenase (VLCAD)-deficiency, the most common defect of long-chain fatty acid oxidation. The long-term impact of these interventions is unknown. We characterized here the effects of a fat-reduced, carbohydrate-enriched diet and an increased fat intake on energy metabolism in a mouse model of VLCAD-deficiency. Wild-type and VLCAD(-/-) mice were fed one year either with a normal (5.1%), a high fat (10.6%) or a low-fat, carbohydrate-enriched (2.6%) diet. Dietary effects on genes involved in lipogenesis, energy homeostasis and substrate selection were quantified by real-time-PCR. Acylcarnitines as sign of impaired energy production were determined in dried blood spots and tissues. White skeletal muscle was analyzed for muscle fiber type as well as for glycogen and triglyceride content. Both dietary modifications induced enhanced triacylglyceride accumulation in skeletal muscle and inhibition of glucose oxidation. This was accompanied by an up-regulation of genes coding for oxidative muscle fiber type I and a marked accumulation of acylcarnitines, especially prominent in the heart (164±2.8 in VLCAD(-/-) vs. 82.3±2.1 in WT µmol/mg) under a low-fat, carbohydrate-enriched diet. We demonstrate here that both dietary interventions with respect to the fat content of the diet reverse endogenous compensatory mechanisms in muscle that have evolved in VLCAD(-/-) mice resulting in pronounced energy deficiency. In particular, the low-fat carbohydrate-enriched diet was not effective in the long term. Further experiments are necessary to define the optimal energy provision for fatty acid oxidation defects.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa , Dieta com Restrição de Gorduras , Metabolismo Energético/genética , Fibras Musculares Esqueléticas/metabolismo , Acil-CoA Desidrogenase de Cadeia Longa/deficiência , Acil-CoA Desidrogenase de Cadeia Longa/genética , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Animais , Carnitina/análogos & derivados , Carnitina/sangue , Gorduras na Dieta/metabolismo , Lipídeos/sangue , Lipogênese , Fígado/metabolismo , Camundongos , Camundongos Transgênicos , Especificidade por Substrato , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA