Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Bull Environ Contam Toxicol ; 102(2): 210-217, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30659300

RESUMO

Artisanal and small-scale gold mining (ASGM) has been performed in the southern Ecuadorian Amazon since the colonial period. However, its effects on fluvial systems have been poorly investigated. Thus, in order to calculate the normalized enrichment factors (NEF) of several heavy metals in fluvial sediments of the Zamora River basin (Ecuadorian Amazon), we analyzed bottom sediments along ASGM-affected and unaffected river sections. The results indicated that sediments of the Congüime River have NEF between 2.2 and 2.3 for Cu (moderate contamination) and higher than 3 for Mn, Zn, Pb, and Hg (severe contamination). Similarly, a severe contamination is also observed in the lower Nangaritza River, due to sediments of this sector have NEF > 3 for Zn, Pb, and Hg. Bottom sediments from the Nambija and Zamora rivers showed a severe contamination with Hg (NEF > 3), suggesting the existence of ASGM activities in the upper Zamora River basin.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Ouro , Metais Pesados/análise , Mineração , Poluentes Químicos da Água/análise , Rios , América do Sul
2.
Environ Monit Assess ; 189(8): 394, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28710689

RESUMO

The Monterrey metropolitan area (MMA) is the third greatest urban area and the second largest economic city of Mexico. More than four million people living in this megacity use groundwater for drinking, industrial and household purposes. Thus, major ion and trace element content were assessed in order to investigate the main hydrochemical properties of groundwater and determine if groundwater of the area poses a threat to the MMA population. Hierarchical cluster analysis using all the groundwater chemical data showed five groups of water. The first two groups were classified as recharge waters (Ca-HCO3) coming from the foothills of mountain belts. The third group was also of Ca-HCO3 water type flowing through lutites and limestones. Transition zone waters of group four (Ca-HCO3-SO4) flow through the valley of Monterrey, whereas discharge waters of group 5 (Ca-SO4) were found toward the north and northeast of the MMA. Principal component analysis performed in groundwater data indicates four principal components (PCs). PC1 included major ions Si, Co, Se, and Zn, suggesting that these are derived by rock weathering. Other trace elements such as As, Mo, Mn, and U are coupled in PC2 because they show redox-sensitive properties. PC3 indicates that Pb and Cu could be the less mobile elements in groundwater. Although groundwater supplied to MMA showed a high-quality, high mineralized waters of group 5 have NO3- concentrations higher than the maximum value proposed by international guidelines and SO42-, NO3-, and total dissolved solid concentrations higher than the maximum levels allowed by the Mexican normative.


Assuntos
Monitoramento Ambiental , Água Subterrânea/química , Íons/análise , Oligoelementos/análise , Poluentes Químicos da Água/análise , Cidades , México , Análise de Componente Principal , Qualidade da Água
3.
Chemosphere ; 198: 510-521, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29427952

RESUMO

The Mezquital Valley system is the world's oldest and largest example with regard to use of untreated wastewater for agricultural irrigation. Because of the artificial high recharge associated with the Mezquital Valley aquifers, groundwater is extracted for human consumption, and there are plans to use this groundwater as a water resource for Mexico City. Thus, this study analyzed 218 organic micro-contaminants in wastewater, springs, and groundwater from Mezquital Valley. Five volatile organic compounds (VOCs) and nine semi-volatile organic compounds (SVOCs) were detected in the wastewater used for irrigation. Only two SVOCs [bis-2-(ethylhexyl) phthalate and dibutyl phthalate] were detected in all the wastewater canals and groundwater sources, whereas no VOCs were detected in groundwater and springs. Of the 118 pharmaceutically active compounds (PhACs) and 7 reproductive hormones measured, 65 PhACs and 3 hormones were detected in the wastewater. Of these, metformin, caffeine, and acetaminophen account for almost sixty percent of the total PhACs in wastewater. Nevertheless, 23 PhACs were detected in groundwater sources, where the majority of these compounds have low detection frequencies. The PhACs sulfamethoxazole, N,N-diethyl-meta-toluamide, carbamazepine, and benzoylecgonine (primary cocaine metabolite) were frequently detected in groundwater, suggesting that although the soils act as a filter adsorbing and degrading the majority of the organic pollutant content in wastewater, these PhACs still reach the aquifer. Therefore, the presence of these PhACs, together with the high levels of the endocrine disruptor bis-2-(ethylhexyl) phthalate, indicate that water sources derived from the recharge of the studied aquifers may pose a risk to consumer health.


Assuntos
Água Subterrânea/análise , Preparações Farmacêuticas/análise , Compostos Orgânicos Voláteis/análise , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Adsorção , Irrigação Agrícola , Dibutilftalato/análise , Dietilexilftalato/análise , Disruptores Endócrinos/análise , Monitoramento Ambiental , Água Subterrânea/química , Humanos , México , Solo/química , Recursos Hídricos
4.
Micromachines (Basel) ; 9(10)2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-30424469

RESUMO

In recent years, ever-increasing scientific knowledge and modern high-tech advancements in micro- and nano-scales fabrication technologies have impacted significantly on various scientific fields. A micro-level approach so-called "microfluidic technology" has rapidly evolved as a powerful tool for numerous applications with special reference to bioengineering and biomedical engineering research. Therefore, a transformative effect has been felt, for instance, in biological sample handling, analyte sensing cell-based assay, tissue engineering, molecular diagnostics, and drug screening, etc. Besides such huge multi-functional potentialities, microfluidic technology also offers the opportunity to mimic different organs to address the complexity of animal-based testing models effectively. The combination of fluid physics along with three-dimensional (3-D) cell compartmentalization has sustained popularity as organ-on-a-chip. In this context, simple humanoid model systems which are important for a wide range of research fields rely on the development of a microfluidic system. The basic idea is to provide an artificial testing subject that resembles the human body in every aspect. For instance, drug testing in the pharma industry is crucial to assure proper function. Development of microfluidic-based technology bridges the gap between in vitro and in vivo models offering new approaches to research in medicine, biology, and pharmacology, among others. This is also because microfluidic-based 3-D niche has enormous potential to accommodate cells/tissues to create a physiologically relevant environment, thus, bridge/fill in the gap between extensively studied animal models and human-based clinical trials. This review highlights principles, fabrication techniques, and recent progress of organs-on-chip research. Herein, we also point out some opportunities for microfluidic technology in the future research which is still infancy to accurately design, address and mimic the in vivo niche.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA