Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Dev Biol ; 424(1): 77-89, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28215940

RESUMO

The mammalian kidney collecting ducts are critical for water, electrolyte and acid-base homeostasis and develop as a branched network of tubular structures composed of principal cells intermingled with intercalated cells. The intermingled nature of the different collecting duct cell types has made it challenging to identify unique and critical factors that mark and/or regulate the development of the different collecting duct cell lineages. Here we report that the canonical Notch signaling pathway components, RBPJ and Presinilin1 and 2, are involved in patterning the mouse collecting duct cell fates by maintaining a balance between principal cell and intercalated cell fates. The relatively reduced number of principal cells in Notch-signaling-deficient kidneys offered a unique genetic leverage to identify critical principal cell-enriched factors by transcriptional profiling. Elf5, which codes for an ETS transcription factor, is one such gene that is down-regulated in kidneys with Notch-signaling-deficient collecting ducts. Additionally, Elf5 is among the earliest genes up regulated by ectopic expression of activated Notch1 in the developing collecting ducts. In the kidney, Elf5 is first expressed early within developing collecting ducts and remains on in mature principal cells. Lineage tracing of Elf5-expressing cells revealed that they are committed to the principal cell lineage by as early as E16.5. Over-expression of ETS Class IIa transcription factors, including Elf5, Elf3 and Ehf, increase the transcriptional activity of the proximal promoters of Aqp2 and Avpr2 in cultured ureteric duct cell lines. Conditional inactivation of Elf5 in the developing collecting ducts results in a small but significant reduction in the expression levels of Aqp2 and Avpr2 genes. We have identified Elf5 as an early maker of the principal cell lineage that contributes to the expression of principal cell specific genes.


Assuntos
Aquaporina 2/genética , Linhagem da Célula , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Rim/citologia , Rim/metabolismo , Receptores de Vasopressinas/genética , Fatores de Transcrição/metabolismo , Animais , Aquaporina 2/metabolismo , Contagem de Células , Linhagem Celular , Regulação para Baixo/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Integrases/metabolismo , Rim/embriologia , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/embriologia , Túbulos Renais Coletores/metabolismo , Camundongos Transgênicos , Regiões Promotoras Genéticas/genética , Receptores Notch/metabolismo , Receptores de Vasopressinas/metabolismo , Transdução de Sinais , Regulação para Cima/genética , Ureter/embriologia , Ureter/metabolismo
2.
J Neurosci ; 34(8): 2813-21, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24553923

RESUMO

Ubiquilin-1 (Ubqln1 or Ubqln), a ubiquitin-like protein, mediates degradation of misfolded proteins and has been implicated in a number of pathological and physiological conditions. To better understand its function in vivo, we recently generated transgenic (Tg) mice that globally overexpress mouse Ubqln in a variety of tissues and ubqln conditional knock-out mice. The Tg mice were viable and did not show any developmental or behavioral abnormalities compared with their wild-type (WT) littermates. When subjected to oxidative stress or ischemia/reperfusion, however, ubqln Tg mice but not the WT littermates showed increased tolerance to these insults. Following ischemic stroke, ubqln Tg mice recovered motor function more rapidly than did the WT mice. In contrast, KO of ubqln exacerbated neuronal damage after stroke. In addition, KO of ubqln also caused accumulation of ubiquitinated proteins. When ubqln KO mice were crossed with a ubiquitin-proteasome system function reporter mouse, the accumulation of a proteasome surrogate substrate was observed. These results suggest that Ubqln protects mice from oxidative stress and ischemic stroke-caused neuronal injury through facilitating removal of damaged proteins. Thus, enhanced removal of unwanted proteins is a potential therapeutic strategy for treating stroke-caused neuronal injury.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Isquemia Encefálica/genética , Estresse Oxidativo/fisiologia , Acidente Vascular Cerebral/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Apoptose/genética , Apoptose/fisiologia , Proteínas Relacionadas à Autofagia , Western Blotting , Isquemia Encefálica/patologia , DNA Complementar/biossíntese , DNA Complementar/genética , Fluoresceínas , Corantes Fluorescentes , Ataque Isquêmico Transitório/metabolismo , Ataque Isquêmico Transitório/patologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Equilíbrio Postural/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/patologia , Acidente Vascular Cerebral/patologia
3.
J Neurochem ; 129(3): 539-47, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24383989

RESUMO

The ubiquitin proteasome system (UPS) is impaired in Huntington's disease, a devastating neurodegenerative disorder. Sulforaphane, a naturally occurring compound, has been shown to stimulate UPS activity in cell cultures. To test whether sulforaphane enhances UPS function in vivo, we treated UPS function reporter mice ubiquitously expressing the green fluorescence protein (GFP) fused to a constitutive degradation signal that promotes its rapid degradation in the conditions of a healthy UPS. The modified GFP is termed GFP UPS reporter (GFPu). We found that both GFPu and ubiquitinated protein levels were significantly reduced and the three peptidase activities of the proteasome were increased in the brain and peripheral tissues of the mice. Interestingly, sulforaphane treatment also enhanced autophagy activity in the brain and the liver. To further examine whether sulforaphane promotes mutant huntingtin (mHtt) degradation, we treated Huntington's disease cells with sulforaphane and found that sulforaphane not only enhanced mHtt degradation but also reduced mHtt cytotoxicity. Sulforaphane-mediated mHtt degradation was mainly through the UPS pathway as the presence of a proteasome inhibitor abolished this effect. Taken together, these data indicate that sulforaphane activates protein degradation machineries in both the brain and peripheral tissues and may be a therapeutic reagent for Huntington's disease and other intractable disorders. Accumulation of mutant huntingtin (mHtt) protein causes Huntington's disease (HD). Sulforaphane (SFN), a naturally occurring compound, increased proteasome and autophagy activities in vivo and enhanced mHtt turnover and cell survival in HD cell models. SFN-mediated mHtt degradation is mainly through the proteasome pathway. These data suggest that SFN can be a therapeutic reagent for treating HD and other intractable disorders.


Assuntos
Autofagia , Doença de Huntington/metabolismo , Isotiocianatos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Western Blotting , Modelos Animais de Doenças , Células HEK293 , Células HeLa , Humanos , Proteína Huntingtina , Isotiocianatos/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Sulfóxidos , Transfecção
4.
Cell Mol Neurobiol ; 34(3): 315-22, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24363091

RESUMO

Alzheimer's disease (AD), the most common cause of dementia, is neuropathologically characterized by accumulation of insoluble fibrous inclusions in the brain in the form of intracellular neurofibrillary tangles and extracellular senile plaques. Perturbation of the ubiquitin-proteasome system (UPS) has long been considered an attractive hypothesis to explain the pathogenesis of AD. However, studies on UPS functionality with various methods and AD models have achieved non-conclusive results. To get further insight into UPS functionality in AD, we have crossed a well-documented APPswe/PS1dE9 AD mouse model with a UPS functionality reporter, GFPu, mouse expressing green fluorescence protein (GFP) fused to a constitutive degradation signal (CL-1) that facilitates its rapid turnover in conditions of a normal UPS. Our western blot results indicate that GFPu reporter protein was accumulated in the cortex and hippocampus, but not striatum in the APPswe/PS1dE9 AD mouse model at 4 weeks of age, which is confirmed by fluorescence microscopy and elevated levels of p53, an endogenous UPS substrate. In accordance with this, the levels of ubiquitinated proteins were elevated in the AD mouse model. These results suggest that UPS is either impaired or functionally insufficient in specific brain regions in the APPswe/PS1dE9 AD mouse model at a very young age, long before senile plaque formation and the onset of memory loss. These observations may shed new light on the pathogenesis of AD.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide , Encéfalo/metabolismo , Proteínas de Fluorescência Verde/biossíntese , Presenilina-1 , Complexos Ubiquitina-Proteína Ligase/biossíntese , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Presenilina-1/genética , Complexos Ubiquitina-Proteína Ligase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA