Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 239(5): 2007-2025, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37394728

RESUMO

Members of the R2R3-MYB transcription factor subgroup 19 (SG19) have been extensively studied in multiple plant species using different silenced or mutated lines. Some studies have proposed a function in flower opening, others in floral organ development/maturation, or specialized metabolism production. While SG19 members are clearly key players during flower development and maturation, the resulting picture is complex, confusing our understanding in how SG19 genes function. To clarify the function of the SG19 transcription factors, we used a single system, Petunia axillaris, and targeted its two SG19 members (EOB1 and EOB2) by CRISPR-Cas9. Although EOB1 and EOB2 are highly similar, they display radically different mutant phenotypes. EOB1 has a specific role in scent emission while EOB2 has pleiotropic functions during flower development. The eob2 knockout mutants reveal that EOB2 is a repressor of flower bud senescence by inhibiting ethylene production. Moreover, partial loss-of-function mutants (transcriptional activation domain missing) show that EOB2 is also involved in both petal and pistil maturation through regulation of primary and secondary metabolism. Here, we provide new insights into the genetic regulation of flower maturation and senescence. It also emphasizes the function of EOB2 in the adaptation of plants to specific guilds of pollinators.


Assuntos
Petunia , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Flores/fisiologia , Reprodução , Petunia/metabolismo
2.
Emerg Infect Dis ; 27(2): 603-607, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33496217

RESUMO

Anopheles stephensi mosquitoes, efficient vectors in parts of Asia and Africa, were found in 75.3% of water sources surveyed and contributed to 80.9% of wild-caught Anopheles mosquitoes in Awash Sebat Kilo, Ethiopia. High susceptibility of these mosquitoes to Plasmodium falciparum and vivax infection presents a challenge for malaria control in the Horn of Africa.


Assuntos
Anopheles , Plasmodium vivax , Animais , Ásia , Etiópia , Mosquitos Vetores , Plasmodium falciparum
3.
Ecotoxicol Environ Saf ; 166: 26-34, 2018 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-30243044

RESUMO

Daphnia magna were exposed to two pesticides in the presence or absence of microplastics (300 000 particles ml-1 1 µm polystyrene spheres) and to microplastics alone. The pesticides were dimethoate, an organophosphate insecticide with a low log Kow, and deltamethrin, a pyrethroid insecticide with a high log Kow. Daphnia were exposed to a nominal concentration range of 0.15, 0.31, 0.63, 1.25, 2.5, 5 mg l-1 dimethoate and 0.016, 0.08, 0.4, 2, 5 and 10 µg l-1 deltamethrin. Exposure to polystyrene microplastics alone showed no effects on Daphnia magna survival and mobility over a 72 h exposure. In the dimethoate exposures, mobility and survival were both affected from a concentration of 1.25 mg l-1, with effects were seen on mobility from 28 h and survival from 48 h, with greater effects seen with increasing concentration and exposure time. In deltamethrin exposures, survival was affected from a concentration of 0.4 µg l-1 and mobility from a concentration of 0.08 µg l-1. Effects of deltamethrin on mobility were seen from 5 h and on survival from 28 h, with greater effects on survival and mobility seen with increasing concentration and exposure time. Contrary to expectations, pesticide toxicity to Daphnia magna was not affected by the presence of microplastics, regardless of chemical binding affinity (log Kow). This therefore suggests that polystyrene microplastics are unlikely to act as a significant sink, nor as a vector for increased uptake of pesticides by aquatic organisms. CAPSULE: Polystyrene microplastics are unlikely to act as vector for increased uptake of pesticides by aquatic organisms.


Assuntos
Daphnia/efeitos dos fármacos , Praguicidas/toxicidade , Plásticos/toxicidade , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos , Dimetoato/toxicidade , Nitrilas/toxicidade , Piretrinas/toxicidade , Testes de Toxicidade Aguda
4.
Parasit Vectors ; 13(1): 401, 2020 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-32771047

RESUMO

BACKGROUND: To understand the dynamics of malaria transmission, membrane feeding assays with glass feeders are used to assess the transmission potential of malaria infected individuals to mosquitoes. However, in some circumstances, use of these assays is hindered by both the blood volume requirement and the availability of fragile, specially crafted glass feeders. 3D printed plastic feeders that require very small volumes of blood would thus expand the utility of membrane feeding assays. METHODS: Using two 3D printing production methods, MultiJet (MJ) and Digital Light Processing (DLP), we developed a plastic version of the most commonly used standard glass feeder (the mini-feeder) with an improved design, and also a smaller feeder requiring only 60 µl of blood (the nano-feeder). Performance of the 3D printed feeders was compared to standard glass mini-feeders by assessing infectivity of gametocytes to mosquitoes in standard membrane feeding assays with laboratory reared Anopheles stephensi mosquitoes and cultured Plasmodium falciparum gametocytes. In addition, the optimum number of mosquitoes that can feed on the nano-feeder was determined by evaluating fully fed mosquitoes visually and by assessing blood- meal volume with a colorimetric haemoglobin assay. RESULTS: The 3D printing methods allowed quick and inexpensive production of durable feeders. Infectivity of gametocytes to mosquitoes was comparable for MJ and DLP 3D printed feeders and glass feeders, and the performance of the 3D printed feeders was not influenced by repeated washing with bleach. There was no loss in transmission efficiency when the feeder size was reduced from mini-feeder to nano-feeder, and blood-meal volume assessment indicated ~10 An. stephensi mosquitoes can take a full blood-meal (median volume 3.44 µl) on a nano-feeder. CONCLUSIONS: Here we present 3D printed mini- and nano-feeders with comparable performance to the currently used glass mini-feeders. These feeders do not require specialized glass craftsmanship, making them easily accessible. Moreover, the smaller nano-feeders will enable evaluation of smaller blood volumes that can be collected from finger prick, thus expanding the utility of membrane feeding assays and facilitating a more thorough evaluation of the human infectious reservoir for malaria.


Assuntos
Anopheles , Bioensaio/métodos , Equipamentos e Provisões , Plasmodium falciparum , Impressão Tridimensional/instrumentação , Animais , Anopheles/parasitologia , Anopheles/fisiologia , Sangue/parasitologia , Volume Sanguíneo , Comportamento Alimentar , Humanos , Malária Falciparum/transmissão , Modelos Animais , Mosquitos Vetores
5.
Sci Total Environ ; 631-632: 341-347, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29525713

RESUMO

Agricultural ditches host a diverse community of species. These species often are unwarrantedly exposed to fertilizers and a wide-array of pesticides (hereafter: agrochemicals). Standardized ecotoxicological research provides valuable information to predict whether these pesticides possibly pose a threat to the organisms living within these ditches, in particular macro-invertebrates. However, knowledge on how mixtures of these agrochemicals affect macro-invertebrates under realistic abiotic conditions and with population and community complexity is mostly lacking. Therefore we examined here, using a full factorial design, the population responses of macroinvertebrate species assemblages exposed to environmentally relevant concentrations of three commonly used agrochemicals (for 35days) in an outdoor experiment. The agrochemicals selected were an insecticide (imidacloprid), herbicide (terbuthylazine) and nutrients (NPK), all having a widespread usage and often detected together in watersheds. Effects on species abundance and body length caused by binary mixture combinations could be described from single substance exposure. However, when agrochemicals were applied as tertiary mixtures, as they are commonly found in agricultural waters, species' abundance often deviated from expectations made based on the three single treatments. This indicates that pesticide-mixture induced toxicity to population relevant endpoints are difficult to extrapolate to field conditions. As in agricultural ditches often a multitude (approx. up to 7) of agrochemicals residues are detected, we call other scientist to verify the ecological complexity of non-additive induced shifts in natural aquatic invertebrate populations and aquatic species assemblages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA