RESUMO
We use pulsed spontaneous parametric down-conversion in KTiOPO 4, with a Gaussian phase-matching function and a transform-limited Gaussian pump, to achieve near-unity spectral purity in heralded single photons at telecommunication wavelength. Theory shows that these phase-matching and pump conditions are sufficient to ensure that a biphoton state with a circularly symmetric joint spectral intensity profile is transform limited and factorable. We verify the heralded-state spectral purity in a four-fold coincidence measurement by performing Hong-Ou-Mandel interference between two independently generated heralded photons. With a mild spectral filter we obtain an interference visibility of 98.4±1.1% which corresponds to a heralded-state purity of 99.2%. Our heralded photon source is potentially an essential resource for measurement-based quantum information processing and quantum network applications.
RESUMO
Deterministic frequency manipulation of single photons is an essential tool for quantum communications and quantum networks. We demonstrate a 15.65 GHz frequency shift for classical and nonclassical light using a commercially available quadrature phase-shift keying modulator. The measured spectrum of frequency-shifted single photons indicates a high carrier-to-sideband ratio of 30 dB. We illustrate our frequency shifter's utility in quantum photonics by performing Hong-Ou-Mandel quantum interference between two photons whose initial frequency spectra overlap only partially, and showing visibility improvement from 62.7 to 89.1% after one of the photons undergoes a corrective frequency shift.
RESUMO
Polarization is one of the basic properties of electromagnetic waves conveying valuable information in signal transmission and sensitive measurements. Conventional methods for advanced polarization control impose demanding requirements on material properties and attain only limited performance. We demonstrated ultrathin, broadband, and highly efficient metamaterial-based terahertz polarization converters that are capable of rotating a linear polarization state into its orthogonal one. On the basis of these results, we created metamaterial structures capable of realizing near-perfect anomalous refraction. Our work opens new opportunities for creating high-performance photonic devices and enables emergent metamaterial functionalities for applications in the technologically difficult terahertz-frequency regime.