Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 619(7970): 572-584, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37468586

RESUMO

The intestine is a complex organ that promotes digestion, extracts nutrients, participates in immune surveillance, maintains critical symbiotic relationships with microbiota and affects overall health1. The intesting has a length of over nine metres, along which there are differences in structure and function2. The localization of individual cell types, cell type development trajectories and detailed cell transcriptional programs probably drive these differences in function. Here, to better understand these differences, we evaluated the organization of single cells using multiplexed imaging and single-nucleus RNA and open chromatin assays across eight different intestinal sites from nine donors. Through systematic analyses, we find cell compositions that differ substantially across regions of the intestine and demonstrate the complexity of epithelial subtypes, and find that the same cell types are organized into distinct neighbourhoods and communities, highlighting distinct immunological niches that are present in the intestine. We also map gene regulatory differences in these cells that are suggestive of a regulatory differentiation cascade, and associate intestinal disease heritability with specific cell types. These results describe the complexity of the cell composition, regulation and organization for this organ, and serve as an important reference map for understanding human biology and disease.


Assuntos
Intestinos , Análise de Célula Única , Humanos , Diferenciação Celular/genética , Cromatina/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Mucosa Intestinal/citologia , Intestinos/citologia , Intestinos/imunologia , Análise da Expressão Gênica de Célula Única
2.
Nat Methods ; 20(8): 1174-1178, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37468619

RESUMO

Multiplexed antibody-based imaging enables the detailed characterization of molecular and cellular organization in tissues. Advances in the field now allow high-parameter data collection (>60 targets); however, considerable expertise and capital are needed to construct the antibody panels employed by these methods. Organ mapping antibody panels are community-validated resources that save time and money, increase reproducibility, accelerate discovery and support the construction of a Human Reference Atlas.


Assuntos
Anticorpos , Recursos Comunitários , Humanos , Reprodutibilidade dos Testes , Diagnóstico por Imagem
3.
Nat Methods ; 19(11): 1411-1418, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36280720

RESUMO

Accurate cell-type annotation from spatially resolved single cells is crucial to understand functional spatial biology that is the basis of tissue organization. However, current computational methods for annotating spatially resolved single-cell data are typically based on techniques established for dissociated single-cell technologies and thus do not take spatial organization into account. Here we present STELLAR, a geometric deep learning method for cell-type discovery and identification in spatially resolved single-cell datasets. STELLAR automatically assigns cells to cell types present in the annotated reference dataset and discovers novel cell types and cell states. STELLAR transfers annotations across different dissection regions, different tissues and different donors, and learns cell representations that capture higher-order tissue structures. We successfully applied STELLAR to CODEX multiplexed fluorescent microscopy data and multiplexed RNA imaging datasets. Within the Human BioMolecular Atlas Program, STELLAR has annotated 2.6 million spatially resolved single cells with dramatic time savings.


Assuntos
Análise de Célula Única , Humanos , Microscopia de Fluorescência
4.
Nat Methods ; 19(3): 284-295, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34811556

RESUMO

Tissues and organs are composed of distinct cell types that must operate in concert to perform physiological functions. Efforts to create high-dimensional biomarker catalogs of these cells have been largely based on single-cell sequencing approaches, which lack the spatial context required to understand critical cellular communication and correlated structural organization. To probe in situ biology with sufficient depth, several multiplexed protein imaging methods have been recently developed. Though these technologies differ in strategy and mode of immunolabeling and detection tags, they commonly utilize antibodies directed against protein biomarkers to provide detailed spatial and functional maps of complex tissues. As these promising antibody-based multiplexing approaches become more widely adopted, new frameworks and considerations are critical for training future users, generating molecular tools, validating antibody panels, and harmonizing datasets. In this Perspective, we provide essential resources, key considerations for obtaining robust and reproducible imaging data, and specialized knowledge from domain experts and technology developers.


Assuntos
Anticorpos , Comunicação Celular , Diagnóstico por Imagem
5.
Bioinformatics ; 40(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38902953

RESUMO

MOTIVATION: Spatial omics data demand computational analysis but many analysis tools have computational resource requirements that increase with the number of cells analyzed. This presents scalability challenges as researchers use spatial omics technologies to profile millions of cells. RESULTS: To enhance the scalability of spatial omics data analysis, we developed a rasterization preprocessing framework called SEraster that aggregates cellular information into spatial pixels. We apply SEraster to both real and simulated spatial omics data prior to spatial variable gene expression analysis to demonstrate that such preprocessing can reduce computational resource requirements while maintaining high performance, including as compared to other down-sampling approaches. We further integrate SEraster with existing analysis tools to characterize cell-type spatial co-enrichment across length scales. Finally, we apply SEraster to enable analysis of a mouse pup spatial omics dataset with over a million cells to identify tissue-level and cell-type-specific spatially variable genes as well as spatially co-enriched cell types that recapitulate expected organ structures. AVAILABILITY AND IMPLEMENTATION: SEraster is implemented as an R package on GitHub (https://github.com/JEFworks-Lab/SEraster) with additional tutorials at https://JEF.works/SEraster.


Assuntos
Software , Camundongos , Animais , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Algoritmos
6.
Theor Appl Genet ; 136(4): 74, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36952013

RESUMO

KEY MESSAGE: For genomic selection in clonally propagated crops with diploid (-like) meiotic behavior to be effective, crossing parents should be selected based on genomic predicted cross-performance unless dominance is negligible. For genomic selection (GS) in clonal breeding programs to be effective, parents should be selected based on genomic predicted cross-performance unless dominance is negligible. Genomic prediction of cross-performance enables efficient exploitation of the additive and dominance value simultaneously. Here, we compared different GS strategies for clonally propagated crops with diploid (-like) meiotic behavior, using strawberry as an example. We used stochastic simulation to evaluate six combinations of three breeding programs and two parent selection methods. The three breeding programs included (1) a breeding program that introduced GS in the first clonal stage, and (2) two variations of a two-part breeding program with one and three crossing cycles per year, respectively. The two parent selection methods were (1) parent selection based on genomic estimated breeding values (GEBVs) and (2) parent selection based on genomic predicted cross-performance (GPCP). Selection of parents based on GPCP produced faster genetic gain than selection of parents based on GEBVs because it reduced inbreeding when the dominance degree increased. The two-part breeding programs with one and three crossing cycles per year using GPCP always produced the most genetic gain unless dominance was negligible. We conclude that (1) in clonal breeding programs with GS, parents should be selected based on GPCP, and (2) a two-part breeding program with parent selection based on GPCP to rapidly drive population improvement has great potential to improve breeding clonally propagated crops.


Assuntos
Melhoramento Vegetal , Seleção Genética , Melhoramento Vegetal/métodos , Genoma , Genômica/métodos , Endogamia , Produtos Agrícolas/genética , Modelos Genéticos
7.
Genet Sel Evol ; 55(1): 55, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495982

RESUMO

BACKGROUND: Whole-genome sequence (WGS) data harbor causative variants that may not be present in standard single nucleotide polymorphism (SNP) chip data. The objective of this study was to investigate the impact of using preselected variants from WGS for single-step genomic predictions in maternal and terminal pig lines with up to 1.8k sequenced and 104k sequence imputed animals per line. METHODS: Two maternal and four terminal lines were investigated for eight and seven traits, respectively. The number of sequenced animals ranged from 1365 to 1491 for the maternal lines and 381 to 1865 for the terminal lines. Imputation to sequence occurred within each line for 66k to 76k animals for the maternal lines and 29k to 104k animals for the terminal lines. Two preselected SNP sets were generated based on a genome-wide association study (GWAS). Top40k included the SNPs with the lowest p-value in each of the 40k genomic windows, and ChipPlusSign included significant variants integrated into the porcine SNP chip used for routine genotyping. We compared the performance of single-step genomic predictions between using preselected SNP sets assuming equal or different variances and the standard porcine SNP chip. RESULTS: In the maternal lines, ChipPlusSign and Top40k showed an average increase in accuracy of 0.6 and 4.9%, respectively, compared to the regular porcine SNP chip. The greatest increase was obtained with Top40k, particularly for fertility traits, for which the initial accuracy based on the standard SNP chip was low. However, in the terminal lines, Top40k resulted in an average loss of accuracy of 1%. ChipPlusSign provided a positive, although small, gain in accuracy (0.9%). Assigning different variances for the SNPs slightly improved accuracies when using variances obtained from BayesR. However, increases were inconsistent across the lines and traits. CONCLUSIONS: The benefit of using sequence data depends on the line, the size of the genotyped population, and how the WGS variants are preselected. When WGS data are available on hundreds of thousands of animals, using sequence data presents an advantage but this remains limited in pigs.


Assuntos
Estudo de Associação Genômica Ampla , Genoma , Animais , Suínos/genética , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único
8.
Genet Sel Evol ; 55(1): 42, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322449

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) aim at identifying genomic regions involved in phenotype expression, but identifying causative variants is difficult. Pig Combined Annotation Dependent Depletion (pCADD) scores provide a measure of the predicted consequences of genetic variants. Incorporating pCADD into the GWAS pipeline may help their identification. Our objective was to identify genomic regions associated with loin depth and muscle pH, and identify regions of interest for fine-mapping and further experimental work. Genotypes for ~ 40,000 single nucleotide morphisms (SNPs) were used to perform GWAS for these two traits, using de-regressed breeding values (dEBV) for 329,964 pigs from four commercial lines. Imputed sequence data was used to identify SNPs in strong ([Formula: see text] 0.80) linkage disequilibrium with lead GWAS SNPs with the highest pCADD scores. RESULTS: Fifteen distinct regions were associated with loin depth and one with loin pH at genome-wide significance. Regions on chromosomes 1, 2, 5, 7, and 16, explained between 0.06 and 3.55% of the additive genetic variance and were strongly associated with loin depth. Only a small part of the additive genetic variance in muscle pH was attributed to SNPs. The results of our pCADD analysis suggests that high-scoring pCADD variants are enriched for missense mutations. Two close but distinct regions on SSC1 were associated with loin depth, and pCADD identified the previously identified missense variant within the MC4R gene for one of the lines. For loin pH, pCADD identified a synonymous variant in the RNF25 gene (SSC15) as the most likely candidate for the muscle pH association. The missense mutation in the PRKAG3 gene known to affect glycogen content was not prioritised by pCADD for loin pH. CONCLUSIONS: For loin depth, we identified several strong candidate regions for further statistical fine-mapping that are supported in the literature, and two novel regions. For loin muscle pH, we identified one previously identified associated region. We found mixed evidence for the utility of pCADD as an extension of heuristic fine-mapping. The next step is to perform more sophisticated fine-mapping and expression quantitative trait loci (eQTL) analysis, and then interrogate candidate variants in vitro by perturbation-CRISPR assays.


Assuntos
Estudo de Associação Genômica Ampla , Músculos , Suínos/genética , Animais , Estudo de Associação Genômica Ampla/métodos , Genótipo , Locos de Características Quantitativas , Fenótipo , Concentração de Íons de Hidrogênio , Polimorfismo de Nucleotídeo Único
9.
Eur J Immunol ; 51(5): 1262-1277, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33548142

RESUMO

Multiparameter tissue imaging enables analysis of cell-cell interactions in situ, the cellular basis for tissue structure, and novel cell types that are spatially restricted, giving clues to biological mechanisms behind tissue homeostasis and disease. Here, we streamlined and simplified the multiplexed imaging method CO-Detection by indEXing (CODEX) by validating 58 unique oligonucleotide barcodes that can be conjugated to antibodies. We showed that barcoded antibodies retained their specificity for staining cognate targets in human tissue. Antibodies were visualized one at a time by adding a fluorescently labeled oligonucleotide complementary to oligonucleotide barcode, imaging, stripping, and repeating this cycle. With this we developed a panel of 46 antibodies that was used to stain five human lymphoid tissues: three tonsils, a spleen, and a LN. To analyze the data produced, an image processing and analysis pipeline was developed that enabled single-cell analysis on the data, including unsupervised clustering, that revealed 31 cell types across all tissues. We compared cell-type compositions within and directly surrounding follicles from the different lymphoid organs and evaluated cell-cell density correlations. This sequential oligonucleotide exchange technique enables a facile imaging of tissues that leverages pre-existing imaging infrastructure to decrease the barriers to broad use of multiplexed imaging.


Assuntos
Anticorpos , Histocitoquímica/métodos , Imagem Molecular/métodos , Oligonucleotídeos , Comunicação Celular , Contagem de Células , Humanos , Hibridização In Situ/métodos , Tecido Linfoide , Especificidade de Órgãos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise de Célula Única/métodos
10.
Theor Appl Genet ; 135(10): 3393-3415, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36066596

RESUMO

KEY MESSAGE: The integration of known and latent environmental covariates within a single-stage genomic selection approach provides breeders with an informative and practical framework to utilise genotype by environment interaction for prediction into current and future environments. This paper develops a single-stage genomic selection approach which integrates known and latent environmental covariates within a special factor analytic framework. The factor analytic linear mixed model of Smith et al. (2001) is an effective method for analysing multi-environment trial (MET) datasets, but has limited practicality since the underlying factors are latent so the modelled genotype by environment interaction (GEI) is observable, rather than predictable. The advantage of using random regressions on known environmental covariates, such as soil moisture and daily temperature, is that the modelled GEI becomes predictable. The integrated factor analytic linear mixed model (IFA-LMM) developed in this paper includes a model for predictable and observable GEI in terms of a joint set of known and latent environmental covariates. The IFA-LMM is demonstrated on a late-stage cotton breeding MET dataset from Bayer CropScience. The results show that the known covariates predominately capture crossover GEI and explain 34.4% of the overall genetic variance. The most notable covariates are maximum downward solar radiation (10.1%), average cloud cover (4.5%) and maximum temperature (4.0%). The latent covariates predominately capture non-crossover GEI and explain 40.5% of the overall genetic variance. The results also show that the average prediction accuracy of the IFA-LMM is [Formula: see text] higher than conventional random regression models for current environments and [Formula: see text] higher for future environments. The IFA-LMM is therefore an effective method for analysing MET datasets which also utilises crossover and non-crossover GEI for genomic prediction into current and future environments. This is becoming increasingly important with the emergence of rapidly changing environments and climate change.


Assuntos
Interação Gene-Ambiente , Modelos Genéticos , Genômica , Genótipo , Melhoramento Vegetal , Solo
11.
PLoS Biol ; 17(2): e3000071, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30818353

RESUMO

Information on crop pedigrees can be used to help maximise genetic gain in crop breeding and allow efficient management of genetic resources. We present a pedigree resource of 2,657 wheat (Triticum aestivum L.) genotypes originating from 38 countries, representing more than a century of breeding and variety development. Visualisation of the pedigree enables illustration of the key developments in United Kingdom wheat breeding, highlights the wide genetic background of the UK wheat gene pool, and facilitates tracing the origin of beneficial alleles. A relatively high correlation between pedigree- and marker-based kinship coefficients was found, which validated the pedigree and enabled identification of errors in the pedigree or marker data. Using simulations with a combination of pedigree and genotype data, we found evidence for significant effects of selection by breeders. Within crosses, genotypes are often more closely related than expected by simulations to one of the parents, which indicates selection for favourable alleles during the breeding process. Selection across the pedigree was demonstrated on a subset of the pedigree in which 110 genotyped varieties released before the year 2000 were used to simulate the distribution of marker alleles of 45 genotyped varieties released after the year 2000, in the absence of selection. Allelic diversity in the 45 varieties was found to deviate significantly from the simulated distributions at a number of loci, indicating regions under selection over this period. The identification of one of these regions as coinciding with a strong yield component quantitative trait locus (QTL) highlights both the potential of the remaining loci as wheat breeding targets for further investigation, as well as the utility of this pedigree-based methodology to identify important breeding targets in other crops. Further evidence for selection was found as greater linkage disequilibrium (LD) for observed versus simulated genotypes within all chromosomes. This difference was greater at shorter genetic distances, indicating that breeder selections have conserved beneficial linkage blocks. Collectively, this work highlights the benefits of generating detailed pedigree resources for crop species. The wheat pedigree database developed here represents a valuable community resource and will be updated as new varieties are released at https://www.niab.com/pages/id/501/UK_Wheat_varieties_Pedigree.


Assuntos
Adaptação Fisiológica , Cruzamento , Triticum/fisiologia , Alelos , Cromossomos de Plantas/genética , Ligação Genética , Marcadores Genéticos , Genoma de Planta , Genótipo , Desequilíbrio de Ligação/genética , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Triticum/genética
12.
Genet Sel Evol ; 54(1): 39, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35659233

RESUMO

BACKGROUND: It is expected that functional, mainly missense and loss-of-function (LOF), and regulatory variants are responsible for most phenotypic differences between breeds and genetic lines of livestock species that have undergone diverse selection histories. However, there is still limited knowledge about the existing missense and LOF variation in commercial livestock populations, in particular regarding population-specific variation and how it can affect applications such as across-breed genomic prediction. METHODS: We re-sequenced the whole genome of 7848 individuals from nine commercial pig lines (average sequencing coverage: 4.1×) and imputed whole-genome genotypes for 440,610 pedigree-related individuals. The called variants were categorized according to predicted functional annotation (from LOF to intergenic) and prevalence level (number of lines in which the variant segregated; from private to widespread). Variants in each category were examined in terms of their distribution along the genome, alternative allele frequency, per-site Wright's fixation index (FST), individual load, and association to production traits. RESULTS: Of the 46 million called variants, 28% were private (called in only one line) and 21% were widespread (called in all nine lines). Genomic regions with a low recombination rate were enriched with private variants. Low-prevalence variants (called in one or a few lines only) were enriched for lower allele frequencies, lower FST, and putatively functional and regulatory roles (including LOF and deleterious missense variants). On average, individuals carried fewer private deleterious missense alleles than expected compared to alleles with other predicted consequences. Only a small subset of the low-prevalence variants had intermediate allele frequencies and explained small fractions of phenotypic variance (up to 3.2%) of production traits. The significant low-prevalence variants had higher per-site FST than the non-significant ones. These associated low-prevalence variants were tagged by other more widespread variants in high linkage disequilibrium, including intergenic variants. CONCLUSIONS: Most low-prevalence variants have low minor allele frequencies and only a small subset of low-prevalence variants contributed detectable fractions of phenotypic variance of production traits. Accounting for low-prevalence variants is therefore unlikely to noticeably benefit across-breed analyses, such as the prediction of genomic breeding values in a population using reference populations of a different genetic background.


Assuntos
Genoma , Polimorfismo de Nucleotídeo Único , Animais , Frequência do Gene , Variação Genética , Genômica , Genótipo , Suínos/genética
13.
Genet Sel Evol ; 54(1): 65, 2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153511

RESUMO

BACKGROUND: Early simulations indicated that whole-genome sequence data (WGS) could improve the accuracy of genomic predictions within and across breeds. However, empirical results have been ambiguous so far. Large datasets that capture most of the genomic diversity in a population must be assembled so that allele substitution effects are estimated with high accuracy. The objectives of this study were to use a large pig dataset from seven intensely selected lines to assess the benefits of using WGS for genomic prediction compared to using commercial marker arrays and to identify scenarios in which WGS provides the largest advantage. METHODS: We sequenced 6931 individuals from seven commercial pig lines with different numerical sizes. Genotypes of 32.8 million variants were imputed for 396,100 individuals (17,224 to 104,661 per line). We used BayesR to perform genomic prediction for eight complex traits. Genomic predictions were performed using either data from a standard marker array or variants preselected from WGS based on association tests. RESULTS: The accuracies of genomic predictions based on preselected WGS variants were not robust across traits and lines and the improvements in prediction accuracy that we achieved so far with WGS compared to standard marker arrays were generally small. The most favourable results for WGS were obtained when the largest training sets were available and standard marker arrays were augmented with preselected variants with statistically significant associations to the trait. With this method and training sets of around 80k individuals, the accuracy of within-line genomic predictions was on average improved by 0.025. With multi-line training sets, improvements of 0.04 compared to marker arrays could be expected. CONCLUSIONS: Our results showed that WGS has limited potential to improve the accuracy of genomic predictions compared to marker arrays in intensely selected pig lines. Thus, although we expect that larger improvements in accuracy from the use of WGS are possible with a combination of larger training sets and optimised pipelines for generating and analysing such datasets, the use of WGS in the current implementations of genomic prediction should be carefully evaluated against the cost of large-scale WGS data on a case-by-case basis.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Alelos , Animais , Genômica/métodos , Genótipo , Suínos/genética
14.
Bioinformatics ; 36(15): 4369-4371, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32467963

RESUMO

SUMMARY: AlphaFamImpute is an imputation package for calling, phasing and imputing genome-wide genotypes in outbred full-sib families from single nucleotide polymorphism (SNP) array and genotype-by-sequencing (GBS) data. GBS data are increasingly being used to genotype individuals, especially when SNP arrays do not exist for a population of interest. Low-coverage GBS produces data with a large number of missing or incorrect naïve genotype calls, which can be improved by identifying shared haplotype segments between full-sib individuals. Here, we present AlphaFamImpute, an algorithm specifically designed to exploit the genetic structure of full-sib families. It performs imputation using a two-step approach. In the first step, it phases and imputes parental genotypes based on the segregation states of their offspring (i.e. which pair of parental haplotypes the offspring inherited). In the second step, it phases and imputes the offspring genotypes by detecting which haplotype segments the offspring inherited from their parents. With a series of simulations, we find that AlphaFamImpute obtains high-accuracy genotypes, even when the parents are not genotyped and individuals are sequenced at <1x coverage. AVAILABILITY AND IMPLEMENTATION: AlphaFamImpute is available as a Python package from the AlphaGenes website http://www.AlphaGenes.roslin.ed.ac.uk/AlphaFamImpute. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genoma , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos , Humanos
15.
Microb Cell Fact ; 20(1): 94, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933073

RESUMO

BACKGROUND: Vaccines comprising recombinant subunit proteins are well-suited to low-cost and high-volume production for global use. The design of manufacturing processes to produce subunit vaccines depends, however, on the inherent biophysical traits presented by an individual antigen of interest. New candidate antigens typically require developing custom processes for each one and may require unique steps to ensure sufficient yields without product-related variants. RESULTS: We describe a holistic approach for the molecular design of recombinant protein antigens-considering both their manufacturability and antigenicity-informed by bioinformatic analyses such as RNA-seq, ribosome profiling, and sequence-based prediction tools. We demonstrate this approach by engineering the product sequences of a trivalent non-replicating rotavirus vaccine (NRRV) candidate to improve titers and mitigate product variants caused by N-terminal truncation, hypermannosylation, and aggregation. The three engineered NRRV antigens retained their original antigenicity and immunogenicity, while their improved manufacturability enabled concomitant production and purification of all three serotypes in a single, end-to-end perfusion-based process using the biotechnical yeast Komagataella phaffii. CONCLUSIONS: This study demonstrates that molecular engineering of subunit antigens using advanced genomic methods can facilitate their manufacturing in continuous production. Such capabilities have potential to lower the cost and volumetric requirements in manufacturing vaccines based on recombinant protein subunits.


Assuntos
Antígenos Virais/genética , Engenharia Genética/métodos , Vacinas contra Rotavirus/genética , Rotavirus/imunologia , Saccharomycetales/genética , Antígenos Virais/imunologia , Biologia Computacional , Genômica/métodos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Rotavirus/genética , Vacinas contra Rotavirus/imunologia , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia
16.
Genet Sel Evol ; 53(1): 30, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33736590

RESUMO

BACKGROUND: In this paper, we present the AlphaPart R package, an open-source implementation of a method for partitioning breeding values and genetic trends to identify the contribution of selection pathways to genetic gain. Breeding programmes improve populations for a set of traits, which can be measured with a genetic trend calculated from estimated breeding values averaged by year of birth. While sources of the overall genetic gain are generally known, their realised contributions are hard to quantify in complex breeding programmes. The aim of this paper is to present the AlphaPart R package and demonstrate it with a simulated stylized multi-tier breeding programme mimicking a pig or poultry breeding programme. RESULTS: The package includes the main partitioning function AlphaPart, that partitions the breeding values and genetic trends by pre-defined selection paths, and a set of functions for handling data and results. The package is freely available from the CRAN repository at http://CRAN.R-project.org/package=AlphaPart . We demonstrate the use of the package by partitioning the nucleus and multiplier genetic gain of the stylized breeding programme by tier-gender paths. For traits measured and selected in the multiplier, the multiplier selection generated additional genetic gain. By using AlphaPart, we show that the additional genetic gain depends on accuracy and intensity of selection in the multiplier and the extent of gene flow from the nucleus. We have proven that AlphaPart is a valuable tool for understanding the sources of genetic gain in the nucleus and especially the multiplier, and the relationship between the sources and parameters that affect them. CONCLUSIONS: AlphaPart implements the method for partitioning breeding values and genetic trends and provides a useful tool for quantifying the sources of genetic gain in breeding programmes. The use of AlphaPart will help breeders to improve genetic gain through a better understanding of the key selection points that are driving gains in each trait.


Assuntos
Cruzamento/métodos , Modelos Genéticos , Característica Quantitativa Herdável , Animais , Aptidão Genética , Aves Domésticas/genética , Software , Suínos/genética
17.
Genet Sel Evol ; 53(1): 54, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34171988

RESUMO

BACKGROUND: Meiotic recombination results in the exchange of genetic material between homologous chromosomes. Recombination rate varies between different parts of the genome, between individuals, and is influenced by genetics. In this paper, we assessed the genetic variation in recombination rate along the genome and between individuals in the pig using multilocus iterative peeling on 150,000 individuals across nine genotyped pedigrees. We used these data to estimate the heritability of recombination and perform a genome-wide association study of recombination in the pig. RESULTS: Our results confirmed known features of the recombination landscape of the pig genome, including differences in genetic length of chromosomes and marked sex differences. The recombination landscape was repeatable between lines, but at the same time, there were differences in average autosome-wide recombination rate between lines. The heritability of autosome-wide recombination rate was low but not zero (on average 0.07 for females and 0.05 for males). We found six genomic regions that are associated with recombination rate, among which five harbour known candidate genes involved in recombination: RNF212, SHOC1, SYCP2, MSH4 and HFM1. CONCLUSIONS: Our results on the variation in recombination rate in the pig genome agree with those reported for other vertebrates, with a low but nonzero heritability, and the identification of a major quantitative trait locus for recombination rate that is homologous to that detected in several other species. This work also highlights the utility of using large-scale livestock data to understand biological processes.


Assuntos
Variação Genética , Recombinação Genética , Suínos/genética , Animais , Feminino , Loci Gênicos , Masculino , Linhagem
18.
Genet Sel Evol ; 53(1): 70, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496773

RESUMO

BACKGROUND: Body weight (BW) is an economically important trait in the broiler (meat-type chickens) industry. Under the assumption of polygenicity, a "large" number of genes with "small" effects is expected to control BW. To detect such effects, a large sample size is required in genome-wide association studies (GWAS). Our objective was to conduct a GWAS for BW measured at 35 days of age with a large sample size. METHODS: The GWAS included 137,343 broilers spanning 15 pedigree generations and 392,295 imputed single nucleotide polymorphisms (SNPs). A false discovery rate of 1% was adopted to account for multiple testing when declaring significant SNPs. A Bayesian ridge regression model was implemented, using AlphaBayes, to estimate the contribution to the total genetic variance of each region harbouring significant SNPs (1 Mb up/downstream) and the combined regions harbouring non-significant SNPs. RESULTS: GWAS revealed 25 genomic regions harbouring 96 significant SNPs on 13 Gallus gallus autosomes (GGA1 to 4, 8, 10 to 15, 19 and 27), with the strongest associations on GGA4 at 65.67-66.31 Mb (Galgal4 assembly). The association of these regions points to several strong candidate genes including: (i) growth factors (GGA1, 4, 8, 13 and 14); (ii) leptin receptor overlapping transcript (LEPROT)/leptin receptor (LEPR) locus (GGA8), and the STAT3/STAT5B locus (GGA27), in connection with the JAK/STAT signalling pathway; (iii) T-box gene (TBX3/TBX5) on GGA15 and CHST11 (GGA1), which are both related to heart/skeleton development); and (iv) PLAG1 (GGA2). Combined together, these 25 genomic regions explained ~ 30% of the total genetic variance. The region harbouring significant SNPs that explained the largest portion of the total genetic variance (4.37%) was on GGA4 (~ 65.67-66.31 Mb). CONCLUSIONS: To the best of our knowledge, this is the largest GWAS that has been conducted for BW in chicken to date. In spite of the identified regions, which showed a strong association with BW, the high proportion of genetic variance attributed to regions harbouring non-significant SNPs supports the hypothesis that the genetic architecture of BW35 is polygenic and complex. Our results also suggest that a large sample size will be required for future GWAS of BW35.


Assuntos
Peso Corporal/genética , Galinhas/anatomia & histologia , Galinhas/genética , Estudo de Associação Genômica Ampla , Animais , Teorema de Bayes , Feminino , Herança Multifatorial/genética , Fatores de Tempo
19.
Genet Sel Evol ; 53(1): 76, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34551713

RESUMO

BACKGROUND: Backfat thickness is an important carcass composition trait for pork production and is commonly included in swine breeding programmes. In this paper, we report the results of a large genome-wide association study for backfat thickness using data from eight lines of diverse genetic backgrounds. METHODS: Data comprised 275,590 pigs from eight lines with diverse genetic backgrounds (breeds included Large White, Landrace, Pietrain, Hampshire, Duroc, and synthetic lines) genotyped and imputed for 71,324 single-nucleotide polymorphisms (SNPs). For each line, we estimated SNP associations using a univariate linear mixed model that accounted for genomic relationships. SNPs with significant associations were identified using a threshold of p < 10-6 and used to define genomic regions of interest. The proportion of genetic variance explained by a genomic region was estimated using a ridge regression model. RESULTS: We found significant associations with backfat thickness for 264 SNPs across 27 genomic regions. Six genomic regions were detected in three or more lines. The average estimate of the SNP-based heritability was 0.48, with estimates by line ranging from 0.30 to 0.58. The genomic regions jointly explained from 3.2 to 19.5% of the additive genetic variance of backfat thickness within a line. Individual genomic regions explained up to 8.0% of the additive genetic variance of backfat thickness within a line. Some of these 27 genomic regions also explained up to 1.6% of the additive genetic variance in lines for which the genomic region was not statistically significant. We identified 64 candidate genes with annotated functions that can be related to fat metabolism, including well-studied genes such as MC4R, IGF2, and LEPR, and more novel candidate genes such as DHCR7, FGF23, MEDAG, DGKI, and PTN. CONCLUSIONS: Our results confirm the polygenic architecture of backfat thickness and the role of genes involved in energy homeostasis, adipogenesis, fatty acid metabolism, and insulin signalling pathways for fat deposition in pigs. The results also suggest that several less well-understood metabolic pathways contribute to backfat development, such as those of phosphate, calcium, and vitamin D homeostasis.


Assuntos
Tecido Adiposo/anatomia & histologia , Genes , Patrimônio Genético , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Suínos/anatomia & histologia , Suínos/genética , Animais , Genoma , Genômica , Genótipo , Suínos/classificação
20.
Nano Lett ; 20(9): 6289-6298, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32594746

RESUMO

T cells are critical players in disease; yet, their antigen-specificity has been difficult to identify, as current techniques are limited in terms of sensitivity, throughput, or ease of use. To address these challenges, we increased the throughput and translatability of magnetic nanoparticle-based artificial antigen presenting cells (aAPCs) to enrich and expand (E+E) murine or human antigen-specific T cells. We streamlined enrichment, expansion, and aAPC production processes by enriching CD8+ T cells directly from unpurified immune cells, increasing parallel processing capacity of aAPCs in a 96-well plate format, and designing an adaptive aAPC that enables multiplexed aAPC construction for E+E and detection. We applied these adaptive platforms to process and detect CD8+ T cells specific for rare cancer neoantigens, commensal bacterial cross-reactive epitopes, and human viral and melanoma antigens. These innovations dramatically increase the multiplexing ability and decrease the barrier to adopt for investigating antigen-specific T cell responses.


Assuntos
Nanopartículas , Neoplasias , Animais , Células Apresentadoras de Antígenos , Linfócitos T CD8-Positivos , Epitopos , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA