Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(31): 21065-21073, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37525889

RESUMO

One approach for improving lithium transference in electrolytes is through the use of bulky multivalent anions. We have studied a multivalent salt containing a bulky star-shaped anion with a polyhedral oligomeric silsesquioxane (POSS) center and lithium counterions dissolved in a solvent. The charge on each anion, z-, is equal to -20. The self-diffusion coefficients of all species were measured by pulsed field gradient NMR (PFG-NMR). As expected, anion diffusion was significantly slower than cation diffusion. An approximate transference number, also referred to as the current fraction (measured by Bruce, Vincent and Watanabe method), was higher than those expected from PFG-NMR. However, the rigorously defined cation transference number with respect to the solvent velocity measured by electrophoretic NMR was negative at all salt concentrations. In contrast, the approximate transference numbers based on PFG-NMR and current fractions are always positive, as expected. The discrepancy between these three independent approaches for characterizing lithium transference suggests the presence of complex cation-anion interactions in solution. It is evident that the slow self-diffusion of bulky multivalent anions does not necessarily lead to an improvement of lithium transference.

2.
Phys Rev Lett ; 128(19): 198002, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35622024

RESUMO

While electric fields primarily result in migration of charged species in electrolytic solutions, the solutions are dynamically heterogeneous. Solvent molecules within the solvation shells of the cation will be dragged by the field while free solvent molecules will not. We combine electrophoretic NMR measurements of ion and solvent velocities under applied electric fields with molecular dynamics simulations to interrogate different solvation motifs in a model liquid electrolyte. Measured values of the cation transference number (t_{+}^{0}) agree quantitatively with simulation-based predictions over a range of electrolyte concentrations. Solvent-cation interactions strongly influence the concentration-dependent behavior of t_{+}^{0}. We identify a critical concentration at which most of the solvent molecules lie within solvation shells of the cations. The dynamic heterogeneity of solvent molecules is minimized at this concentration where t_{+}^{0} is approximately equal to zero.

3.
Phys Chem Chem Phys ; 24(43): 26591-26599, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36285835

RESUMO

Improving transport properties of electrolytes is important for developing lithium-ion batteries for future energy storage applications. In Newman's concentrated solution theory, electrolytes are characterized by three transport parameters, conductivity, diffusion coefficient, and transference number, in addition to the thermodynamic factor. In this work, these parameters are all determined for an exemplar liquid electrolyte, lithium bis(trifluoromethanesulfonyl)imide mixed in tetraethylene glycol dimethyl ether, using electrochemical methods. The intrinsic coupling between parameters obtained by electrochemical methods results in large error bars in the transference number that obscure the transport behavior of the electrolyte. Here, we use electrophoretic NMR (eNMR) to measure the electric-field-induced ion and solvent velocities to obtain the transference number directly, which enables determination of the thermodynamic factor with greater certainty. Our work indicates that the combination of eNMR and electrochemical methods provides a robust approach for complete characterization of battery electrolytes.

4.
J Phys Chem B ; 126(47): 9893-9900, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36383474

RESUMO

Molecular dynamics (MD) simulations, density functional theory (DFT) calculations, and 1H NMR spectroscopy were performed to gain a complementary understanding of the concentrated Li-ion electrolyte system, lithium bis(trifluoromethanesulfonyl)imide (Li[TFSI]) dissolved in tetraglyme. The computational methods provided the concentration dependence of differing solvation structure motifs by reference to changes in the corresponding NMR spectra. By combining both the computational and experimental methodologies, we show that the various solvation structures, dominated by the coordination between the tetraglyme (G4) solvent and lithium cation, directly influence the chemical shift separation of resonances in the 1H NMR spectra of the solvent. Thus, the 1H NMR spectra can be used to predict the fraction of tetraglyme involved in the solvation process, with quantitative agreement with solvation fraction predictions from MD simulation snapshots. Overall, our results demonstrate the reliability of a hybrid computational and experimental methodology to understand the solvation structure and hence transport mechanism of LiTFSI-G4 electrolytes in the low concentration region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA