Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Circulation ; 129(19): 1924-36, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24599837

RESUMO

BACKGROUND: Experimentally upregulating compliant titins has been suggested as a therapeutic for lowering pathological diastolic stiffness levels. However, how increasing titin compliance impacts global cardiac function requires in-depth study. We investigate the effect of upregulating compliant titins in a novel mouse model with a genetically altered titin splicing factor; integrative approaches were used from intact cardiomyocyte mechanics to pressure-volume analysis and Doppler echocardiography. METHODS AND RESULTS: Compliant titins were upregulated through deletion of the RNA Recognition Motif of the splicing factor RBM20 (Rbm20(ΔRRM)mice). A genome-wide exon expression analysis and a candidate approach revealed that the phenotype is likely to be dominated by greatly increased lengths of titin's spring elements. At both cardiomyocyte and left ventricular chamber levels, diastolic stiffness was reduced in heterozygous (+/-) Rbm20(ΔRRM)mice with a further reduction in homozygous (-/-) mice at only the intact myocyte level. Fibrosis was present in only -/- Rbm20(ΔRRM) hearts. The Frank-Starling Mechanism was reduced in a graded fashion in Rbm20(ΔRRM) mice, at both the cardiomyocyte and left ventricular chamber levels. Exercise tests revealed an increase in exercise capacity in +/- mice. CONCLUSIONS: Titin is not only important in diastolic but also in systolic cardiac function. Upregulating compliant titins reduces diastolic chamber stiffness owing to the increased compliance of myocytes, but it depresses end-systolic elastance; under conditions of exercise, the beneficial effects on diastolic function dominate. Therapeutic manipulation of the RBM20-based splicing system might be able to minimize effects on fibrosis and systolic function while improving the diastolic function in patients with heart failure.


Assuntos
Fenômenos Biomecânicos/fisiologia , Conectina/fisiologia , Diástole/fisiologia , Elasticidade/fisiologia , Coração/fisiologia , Miócitos Cardíacos/fisiologia , Animais , Conectina/deficiência , Conectina/genética , Ecocardiografia Doppler , Heterozigoto , Homozigoto , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Rigidez Vascular/fisiologia , Função Ventricular Esquerda/fisiologia
2.
Circulation ; 128(1): 19-28, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23709671

RESUMO

BACKGROUND: Diastolic dysfunction is a poorly understood but clinically pervasive syndrome that is characterized by increased diastolic stiffness. Titin is the main determinant of cellular passive stiffness. However, the physiological role that the tandem immunoglobulin (Ig) segment of titin plays in stiffness generation and whether shortening this segment is sufficient to cause diastolic dysfunction need to be established. METHODS AND RESULTS: We generated a mouse model in which 9 Ig-like domains (Ig3-Ig11) were deleted from the proximal tandem Ig segment of the spring region of titin (IG KO). Exon microarray analysis revealed no adaptations in titin splicing, whereas novel phospho-specific antibodies did not detect changes in titin phosphorylation. Passive myocyte stiffness was increased in the IG KO, and immunoelectron microscopy revealed increased extension of the remaining titin spring segments as the sole likely underlying mechanism. Diastolic stiffness was increased at the tissue and organ levels, with no consistent changes in extracellular matrix composition or extracellular matrix-based passive stiffness, supporting a titin-based mechanism for in vivo diastolic dysfunction. Additionally, IG KO mice have a reduced exercise tolerance, a phenotype often associated with diastolic dysfunction. CONCLUSIONS: Increased titin-based passive stiffness is sufficient to cause diastolic dysfunction with exercise intolerance.


Assuntos
Diástole/fisiologia , Insuficiência Cardíaca Diastólica/genética , Insuficiência Cardíaca Diastólica/fisiopatologia , Imunoglobulinas/fisiologia , Proteínas Quinases/fisiologia , Fatores Etários , Animais , Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Modelos Animais de Doenças , Elasticidade , Tolerância ao Exercício/fisiologia , Imunoglobulinas/química , Imunoglobulinas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microscopia Imunoeletrônica , Fenótipo , Fosforilação/fisiologia , Proteínas Quinases/química , Proteínas Quinases/genética , Estrutura Terciária de Proteína , Sarcômeros/fisiologia
3.
Circulation ; 128(18): 2016-25, 1-10, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24056688

RESUMO

BACKGROUND: The role of right ventricular (RV) diastolic stiffness in pulmonary arterial hypertension (PAH) is not well established. Therefore, we investigated the presence and possible underlying mechanisms of RV diastolic stiffness in PAH patients. METHODS AND RESULTS: Single-beat RV pressure-volume analyses were performed in 21 PAH patients and 7 control subjects to study RV diastolic stiffness. Data are presented as mean ± SEM. RV diastolic stiffness (ß) was significantly increased in PAH patients (PAH, 0.050 ± 0.005 versus control, 0.029 ± 0.003; P<0.05) and was closely associated with disease severity. Subsequently, we searched for possible underlying mechanisms using RV tissue of PAH patients undergoing heart/lung transplantation and nonfailing donors. Histological analyses revealed increased cardiomyocyte cross-sectional areas (PAH, 453 ± 31 µm² versus control, 218 ± 21 µm²; P<0.001), indicating RV hypertrophy. In addition, the amount of RV fibrosis was enhanced in PAH tissue (PAH, 9.6 ± 0.7% versus control, 7.2 ± 0.6%; P<0.01). To investigate the contribution of stiffening of the sarcomere (the contractile apparatus of RV cardiomyocytes) to RV diastolic stiffness, we isolated and membrane-permeabilized single RV cardiomyocytes. Passive tension at different sarcomere lengths was significantly higher in PAH patients compared with control subjects (>200%; Pinteraction <0.001), indicating stiffening of RV sarcomeres. An important regulator of sarcomeric stiffening is the sarcomeric protein titin. Therefore, we investigated titin isoform composition and phosphorylation. No alterations were observed in titin isoform composition (N2BA/N2B ratio: PAH, 0.78 ± 0.07 versus control, 0.91 ± 0.08), but titin phosphorylation in RV tissue of PAH patients was significantly reduced (PAH, 0.16 ± 0.01 arbitrary units versus control, 0.20 ± 0.01 arbitrary units; P<0.05). CONCLUSIONS: RV diastolic stiffness is significantly increased in PAH patients, with important contributions from increased collagen and intrinsic stiffening of the RV cardiomyocyte sarcomeres.


Assuntos
Diástole/fisiologia , Hipertensão Pulmonar/fisiopatologia , Miocárdio/metabolismo , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/fisiopatologia , Adulto , Idoso , Cateterismo Cardíaco , Volume Cardíaco/fisiologia , Colágeno/metabolismo , Conectina/metabolismo , Hipertensão Pulmonar Primária Familiar , Feminino , Humanos , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/patologia , Hipertrofia Ventricular Direita/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Sarcômeros/metabolismo , Sarcômeros/patologia , Disfunção Ventricular Direita/patologia , Pressão Ventricular/fisiologia
4.
J Mol Cell Cardiol ; 54: 90-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23220127

RESUMO

Titin-based passive stiffness is post-translationally regulated by several kinases that phosphorylate specific spring elements located within titin's elastic I-band region. Whether titin is phosphorylated by calcium/calmodulin dependent protein kinase II (CaMKII), an important regulator of cardiac function and disease, has not been addressed. The aim of this work was to determine whether CaMKIIδ, the predominant CaMKII isoform in the heart, phosphorylates titin, and to use phosphorylation assays and mass spectrometry to study which of titin's spring elements might be targeted by CaMKIIδ. It was found that CaMKIIδ phosphorylates titin in mouse LV skinned fibers, that the CaMKIIδ sites can be dephosphorylated by protein phosphatase 1 (PP1), and that under baseline conditions, in both intact isolated hearts and skinned myocardium, about half of the CaMKIIδ sites are phosphorylated. Mass spectrometry revealed that both the N2B and PEVK segments are targeted by CaMKIIδ at several conserved serine residues. Whether phosphorylation of titin by CaMKIIδ occurs in vivo, was tested in several conditions using back phosphorylation assays and phospho-specific antibodies to CaMKIIδ sites. Reperfusion following global ischemia increased the phosphorylation level of CaMKIIδ sites on titin and this effect was abolished by the CaMKII inhibitor KN-93. No changes in the phosphorylation level of the PEVK element were found suggesting that the increased phosphorylation level of titin in IR (ischemia reperfusion) might be due to phosphorylation of the N2B element. The findings of these studies show for the first time that titin can be phosphoryalated by CaMKIIδ, both in vitro and in vivo, and that titin's molecular spring region that determines diastolic stiffness is a target of CaMKIIδ.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Proteínas Quinases/química , Processamento de Proteína Pós-Traducional , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Sequência Conservada , Ventrículos do Coração/patologia , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Traumatismo por Reperfusão Miocárdica/enzimologia , Miócitos Cardíacos/enzimologia , Fosforilação , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína
5.
J Mol Cell Cardiol ; 51(3): 428-34, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21708170

RESUMO

Viscosity is proposed to modulate diastolic function, but only limited understanding of the source(s) of viscosity exists. In vitro experiments have shown that the proline-glutamic acid-valine-lysine (PEVK) rich element of titin interacts with actin, causing a viscous force in the sarcomere. It is unknown whether this mechanism contributes to viscosity in vivo. We tested the hypothesis that PEVK-actin interaction causes cardiac viscosity and is important in vivo via an integrative physiological study on a unique PEVK knockout (KO) model. Both skinned cardiomyocytes and papillary muscle fibers were isolated from wildtype (WT) and PEVK KO mice and passive viscosity was examined using stretch-hold-release and sinusoidal analysis. Viscosity was reduced by ~60% in KO myocytes and ~50% in muscle fibers at room temperature. The PEVK-actin interaction was not modulated by temperature or diastolic calcium, but was increased by lattice compression. Stretch-hold and sinusoidal frequency protocols on intact isolated mouse hearts showed a smaller, 30-40% reduction in viscosity, possibly due to actomyosin interactions, and showed that microtubules did not contribute to viscosity. Transmitral Doppler echocardiography similarly revealed a 40% decrease in LV chamber viscosity in the PEVK KO in vivo. This integrative study is the first to quantify the influence of a specific molecular (PEVK-actin) viscosity in vivo and shows that PEVK-actin interactions are an important physiological source of viscosity.


Assuntos
Actinas/metabolismo , Ventrículos do Coração/metabolismo , Proteínas Musculares/metabolismo , Proteínas Quinases/metabolismo , Actomiosina/antagonistas & inibidores , Animais , Conectina , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Masculino , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Miocárdio/metabolismo , Ligação Proteica/genética , Proteínas Quinases/genética , Sarcômeros/genética , Sarcômeros/metabolismo , Viscosidade/efeitos dos fármacos
6.
J Biomed Biotechnol ; 2011: 310791, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22162634

RESUMO

Titin exhibits an interaction between its PEVK segment and the actin filament resulting in viscosity, a speed dependent resistive force, which significantly influences diastolic filling in mice. While diastolic disease is clinically pervasive, humans express a more compliant titin (N2BA:N2B ratio ~0.5-1.0) than mice (N2BA:N2B ratio ~0.2). To examine PEVK-actin based viscosity in compliant titin-tissues, we used pig cardiac tissue that expresses titin isoforms similar to that in humans. Stretch-hold experiments were performed at speeds from 0.1 to 10 lengths/s from slack sarcomere lengths (SL) to SL of 2.15 µm. Viscosity was calculated from the slope of stress-relaxation vs stretch speed. Recombinant PEVK was added to compete off native interactions and this found to reduce the slope by 35%, suggesting that PEVK-actin interactions are a strong contributor of viscosity. Frequency sweeps were performed at frequencies of 0.1-400 Hz and recombinant protein reduced viscous moduli by 40% at 2.15 µm and by 50% at 2.25 µm, suggesting a SL-dependent nature of viscosity that might prevent SL "overshoot" at long diastolic SLs. This study is the first to show that viscosity is present at physiologic speeds in the pig and supports the physiologic relevance of PEVK-actin interactions in humans in both health and disease.


Assuntos
Actinas/metabolismo , Proteínas Musculares/metabolismo , Miocárdio/metabolismo , Proteínas Quinases/metabolismo , Estresse Fisiológico/fisiologia , Animais , Conectina , Ventrículos do Coração/metabolismo , Contração Miocárdica/fisiologia , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/metabolismo , Sarcômeros/fisiologia , Estresse Mecânico , Suínos , Viscosidade
7.
J Mol Cell Cardiol ; 48(5): 972-8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20026128

RESUMO

Protein kinase C-alpha (PKCalpha) was recently reported to increase myocardial stiffness, an effect that was proposed to be due to phosphorylation of two highly conserved sites (S11878 and S12022) within the proline-glutamic acid-valine-lysine (PEVK) rich spring element of titin. To test this proposal we investigated the effect of PKCalpha on phosphorylation and passive stiffness in a mouse model lacking the titin exons that contain these two phosphorylation sites, the PEVK knockout (KO). We used skinned, gelsolin-extracted, left ventricular myocardium from wildtype and PEVK KO mice. Consistent with previous work we found that PKCalpha increased passive stiffness in the WT myocardium by 27+/-6%. Importantly, this effect was completely abolished in KO myocardium. In addition, increases in the elastic and viscous moduli at a wide range of frequencies (properties important in diastolic filling) following PKCalpha incubation (27+/-3% and 20+/-4%, respectively) were also ablated in the KO. Back phosphorylation assays showed that titin phosphorylation following incubation with PKCalpha was significantly reduced by 36+/-12% in skinned PEVK KO myocardial tissues. The remaining phosphorylation in the KO suggests that PKCalpha sites exist in the titin molecule outside the PEVK region; these sites are not involved in increasing passive stiffness. Our results firmly support that the PEVK region of cardiac titin is phosphorylated by PKCalpha and that this increases passive tension. Thus, the PEVK spring element is the critical site of PKCalpha's involvement in passive myocardial stiffness.


Assuntos
Proteínas Musculares/metabolismo , Miocárdio/metabolismo , Proteína Quinase C-alfa/farmacologia , Proteínas Quinases/metabolismo , Animais , Conectina , Diástole/fisiologia , Éxons/genética , Coração/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Fosforilação/efeitos dos fármacos , Proteínas Quinases/genética
8.
J Am Heart Assoc ; 3(3): e000716, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24895160

RESUMO

BACKGROUND: Right ventricular (RV) diastolic function is impaired in patients with pulmonary arterial hypertension (PAH). Our previous study showed that elevated cardiomyocyte stiffness and myofilament Ca(2+) sensitivity underlie diastolic dysfunction in PAH. This study investigates protein modifications contributing to cellular diastolic dysfunction in PAH. METHODS AND RESULTS: RV samples from PAH patients undergoing heart-lung transplantation were compared to non-failing donors (Don). Titin stiffness contribution to RV diastolic dysfunction was determined by Western-blot analyses using antibodies to protein-kinase-A (PKA), Cα (PKCα) and Ca(2+)/calmoduling-dependent-kinase (CamKIIδ) titin and phospholamban (PLN) phosphorylation sites: N2B (Ser469), PEVK (Ser170 and Ser26), and PLN (Thr17), respectively. PKA and PKCα sites were significantly less phosphorylated in PAH compared with donors (P<0.0001). To test the functional relevance of PKA-, PKCα-, and CamKIIδ-mediated titin phosphorylation, we measured the stiffness of single RV cardiomyocytes before and after kinase incubation. PKA significantly decreased PAH RV cardiomyocyte diastolic stiffness, PKCα further increased stiffness while CamKIIδ had no major effect. CamKIIδ activation was determined indirectly by measuring PLN Thr17phosphorylation level. No significant changes were found between the groups. Myofilament Ca(2+) sensitivity is mediated by sarcomeric troponin I (cTnI) phosphorylation. We observed increased unphosphorylated cTnI in PAH compared with donors (P<0.05) and reduced PKA-mediated cTnI phosphorylation (Ser22/23) (P<0.001). Finally, alterations in Ca(2+)-handling proteins contribute to RV diastolic dysfunction due to insufficient diastolic Ca(2+) clearance. PAH SERCA2a levels and PLN phosphorylation were significantly reduced compared with donors (P<0.05). CONCLUSIONS: Increased titin stiffness, reduced cTnI phosphorylation, and altered levels of phosphorylation of Ca(2+) handling proteins contribute to RV diastolic dysfunction in PAH.


Assuntos
Hipertensão Pulmonar/fisiopatologia , Miócitos Cardíacos/química , Disfunção Ventricular Direita/fisiopatologia , Adulto , Western Blotting , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/análise , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Estudos de Casos e Controles , Conectina/análise , Conectina/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/análise , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Feminino , Ventrículos do Coração/química , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Miócitos Cardíacos/fisiologia , Fosforilação , Proteína Quinase C-alfa/análise , Proteína Quinase C-alfa/fisiologia , Troponina I/fisiologia
9.
J Clin Invest ; 122(4): 1209-21, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22426213

RESUMO

Actin-myosin interactions provide the driving force underlying each heartbeat. The current view is that actin-bound regulatory proteins play a dominant role in the activation of calcium-dependent cardiac muscle contraction. In contrast, the relevance and nature of regulation by myosin regulatory proteins (for example, myosin light chain-2 [MLC2]) in cardiac muscle remain poorly understood. By integrating gene-targeted mouse and computational models, we have identified an indispensable role for ventricular Mlc2 (Mlc2v) phosphorylation in regulating cardiac muscle contraction. Cardiac myosin cycling kinetics, which directly control actin-myosin interactions, were directly affected, but surprisingly, Mlc2v phosphorylation also fed back to cooperatively influence calcium-dependent activation of the thin filament. Loss of these mechanisms produced early defects in the rate of cardiac muscle twitch relaxation and ventricular torsion. Strikingly, these defects preceded the left ventricular dysfunction of heart disease and failure in a mouse model with nonphosphorylatable Mlc2v. Thus, there is a direct and early role for Mlc2 phosphorylation in regulating actin-myosin interactions in striated muscle contraction, and dephosphorylation of Mlc2 or loss of these mechanisms can play a critical role in heart failure.


Assuntos
Miosinas Cardíacas/fisiologia , Insuficiência Cardíaca/enzimologia , Ventrículos do Coração/enzimologia , Modelos Cardiovasculares , Contração Miocárdica/fisiologia , Cadeias Leves de Miosina/fisiologia , Processamento de Proteína Pós-Traducional , Citoesqueleto de Actina/fisiologia , Actomiosina/fisiologia , Animais , Fenômenos Biomecânicos , Sinalização do Cálcio , Miosinas Cardíacas/química , Miosinas Cardíacas/deficiência , Miosinas Cardíacas/genética , Insuficiência Cardíaca/fisiopatologia , Cinética , Camundongos , Camundongos Mutantes , Relaxamento Muscular/fisiologia , Cadeias Leves de Miosina/química , Cadeias Leves de Miosina/deficiência , Cadeias Leves de Miosina/genética , Fosforilação , Fosfosserina/química , Relação Estrutura-Atividade , Disfunção Ventricular Esquerda/enzimologia , Disfunção Ventricular Esquerda/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA