RESUMO
Organic semiconductor nanoparticles (NPs) composed of an electron donor/acceptor (D/A) semiconductor blend have recently emerged as an efficient class of hydrogen-evolution photocatalysts. It is demonstrated that using conjugated polymers functionalized with (oligo)ethylene glycol side chains in NP photocatalysts can greatly enhance their H2 -evolution efficiency compared to their nonglycolated analogues. The strategy is broadly applicable to a range of structurally diverse conjugated polymers. Transient spectroscopic studies show that glycolation facilitates charge generation even in the absence of a D/A heterojunction, and further suppresses both geminate and nongeminate charge recombination in D/A NPs. This results in a high yield of photogenerated charges with lifetimes long enough to efficiently drive ascorbic acid oxidation, which is correlated with greatly enhanced H2 -evolution rates in the glycolated NPs. Glycolation increases the relative permittivity of the semiconductors and facilitates water uptake. Together, these effects may increase the high-frequency relative permittivity inside the NPs sufficiently, to cause the observed suppression of exciton and charge recombination responsible for the high photocatalytic activities of the glycolated NPs.
RESUMO
From established to emergent technologies, doping plays a crucial role in all semiconducting devices. Doping could, theoretically, be an excellent technique for improving repressively low transconductances in n-type organic electrochemical transistors - critical for advancing logic circuits for bioelectronic and neuromorphic technologies. However, the technical challenge is extreme: n-doped polymers are unstable in electrochemical transistor operating environments, air and water (electrolyte). Here, the first demonstration of doping in electron transporting organic electrochemical transistors is reported. The ammonium salt tetra-n-butylammonium fluoride is simply admixed with the conjugated polymer poly(N,N'-bis(7-glycol)-naphthalene-1,4,5,8-bis(dicarboximide)-co-2,2'-bithiophene-co-N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide), and found to act as a simultaneous molecular dopant and morphology-additive. The combined effects enhance the n-type transconductance with improved channel capacitance and mobility. Furthermore, operational and shelf-life stability measurements showcase the first example of water-stable n-doping in a polymer. Overall, the results set a precedent for doping/additives to impact organic electrochemical transistors as powerfully as they have in other semiconducting devices.
RESUMO
Alzheimer's disease (AD) is a progressive neurodegenerative disease associated with severe memory loss and impaired cognitive skills. A common pathological change found in AD-affected brains is the accumulation of a peptide named amyloid-ß (Aß) that can form plaques. Aß aggregates are visible to structural scanning tools; however, these bulky and expensive instruments are accessible to trained personnel in clinical settings only, thus hampering timely diagnosis of the disease, particularly in low-resource settings. In this work, we design an organic electrochemical transistor (OECT) for in vitro detection of Aß aggregates in human serum. The OECT channel is integrated with a nanostructured isoporous membrane which has a strong affinity for Aß aggregates. The detection mechanism relies on the membrane capturing Aß aggregates larger than the size of its pores and thus blocking the penetration of electrolyte ions into the channel underneath. Combining the high transconductance of the OECT with the precise porosity and selectivity of the membrane, the device detects the presence of Aß aggregates in human serum samples with excellent sensitivity. This is the first-time demonstration of a biofunctionalized, nanostructured, and isoporous membrane integrated with a high-performance transistor for biosensing. This robust, low-power, non-invasive, and miniaturized sensor aids in the development of point-of-care tools for early diagnosis of AD.
Assuntos
Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/sangue , Peptídeos beta-Amiloides/isolamento & purificação , Técnicas Biossensoriais , Doença de Alzheimer/sangue , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Membranas Artificiais , Nanoestruturas/química , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Transistores EletrônicosRESUMO
Contact resistance is renowned for its unfavorable impact on transistor performance. Despite its notoriety, the nature of contact resistance in organic electrochemical transistors (OECTs) remains unclear. Here, by investigating the role of contact resistance in n-type OECTs, the first demonstration of source/drain-electrode surface modification for achieving state-of-the-art n-type OECTs is reported. Specifically, thiol-based self-assembled monolayers (SAMs), 4-methylbenzenethiol (MBT) and pentafluorobenzenethiol (PFBT), are used to investigate contact resistance in n-type accumulation-mode OECTs made from the hydrophilic copolymer P-90, where the deliberate functionalization of the gold source/drain electrodes decreases and increases the energetic mismatch at the electrode/semiconductor interface, respectively. Although MBT treatment is found to increase the transconductance three-fold, contact resistance is not found to be the dominant factor governing OECT performance. Additional morphology and surface energy investigations show that increased performance comes from SAM-enhanced source/drain electrode surface energy, which improves wetting, semiconductor/metal interface quality, and semiconductor morphology at the electrode and channel. Overall, contact resistance in n-type OECTs is investigated, whilst identifying source/drain electrode treatment as a useful device engineering strategy for achieving state of the art n-type OECTs.