RESUMO
FeUO4 was studied to clarify the electronic structure of U(V) in a metal monouranate compound. We obtained the peak splitting of spectra utilizing high-energy-resolution fluorescence detection-X-ray absorption near-edge structure (HERFD-XANES) spectroscopy at the U L3-edge, which is a novel technique in uranium(V) monouranate compounds. Theoretical calculations revealed that the peak splitting was caused by splitting of the 6d orbital of U(V) in FeUO4, which would be used to detect minor U(V) species. Such distinctive electronic states are of major interest to researchers and engineers working in various fields, from fundamental physics to the nuclear industry and environmental sciences for actinide elements.
RESUMO
Single-atom catalysts are a relatively new type of catalyst active for numerous reactions but mainly for chemical transformations performed at low or intermediate temperatures. Here we report that singly dispersed Rh1O5 clusters on TiO2 can catalyze the partial oxidation of methane (POM) at high temperatures with a selectivity of 97% for producing syngas (CO + H2) and high activity with a long catalytic durability at 650 °C. The long durability results from the substitution of a Ti atom of the TiO2 surface lattice by Rh1, which forms a singly dispersed Rh1 atom coordinating with five oxygen atoms (Rh1O5) and an undercoordinated environment but with nearly saturated bonding with oxygen atoms. Computational studies show the back-donation of electrons from the dz2 orbital of the singly dispersed Rh1 atom to the unoccupied orbital of adsorbed CHn (n > 1) results in the charge depletion of the Rh1 atom and a strong binding of CHn to Rh1. This strong binding decreases the barrier for activating C-H, thus leading to high activity of Rh1/TiO2. A cationic Rh1 single atom anchored on TiO2 exhibits a weak binding to atomic carbon, in contrast to the strong binding of the metallic Rh surface to atomic carbon. The weak binding of atomic carbon to Rh1 atoms and the spatial isolation of Rh1 on TiO2 prevent atomic carbon from coupling on Rh1/TiO2 to form carbon layers, making Rh1/TiO2 resistant to carbon deposition than supported metal catalysts for POM. The highly active, selective, and durable high-temperature single-atom catalysis performed at 650 °C demonstrates an avenue of application of single-atom catalysis to chemical transformations at high temperatures.
RESUMO
The synchronizing measurements of both cyclic voltammograms (CVs) and real-time quick XAFSs (QXAFSs) for Pt/C cathode electrocatalysts in a membrane electrode assembly (MEA) of polymer electrolyte fuel cells (PEFCs) treated by anode-gas exchange (AGEX) and cathode-gas exchange (CGEX) cycles (startup/shutdown conditions of FC vehicles) were performed for the first time to understand the opposite effects of the AGEX and CGEX treatments on the Pt/C performance and durability and also the contradiction between the electrochemical active surface area (ECSA) decrease and the performance increase by CGEX treatment. While the AGEX treatment decreased both the ECSA and performance of MEA Pt/C due to carbon corrosion, it was found that the CGEX treatment decreased the ECSA but increased the Pt/C performance significantly due to high-index (331) facet formation (high-resolution STEM) and hence the suppression of strongly bound Pt-oxide formation at cathode Pt nanoparticle surfaces. Transient QXAFS time-profile analysis for the MEA Pt/C also revealed a direct relationship between the electrochemical performance or durability and transient kinetics of the Pt/C cathode.
RESUMO
We developed a multi-analysis system that can measure in situ time-resolved quick XAFS (QXAFS) and in situ three-dimensional XAFS-CT spatial imaging in the same area of a cathode electrocatalyst layer in a membrane-electrode assembly (MEA) of a polymer electrolyte fuel cell (PEFC) at the BL36XU beamline of SPring-8. The multi-analysis system also achieves ex situ two-dimensional nano-XAFS/STEM-EDS same-view measurements of a sliced MEA fabricated from a given place in the XAFS-CT imaged area at high spatial resolutions under a water-vapor saturated N2 atmosphere using a same-view SiN membrane cell. In this study, we applied the combination method of time-resolved QXAFS/3D XAFS-CT/2D nano-XAFS/STEM-EDS for the first time for the visualization analysis of the anode-gas exchange (AGEX) (simulation of the start-up/shut-down of PEFC vehicles) degradation process of a PEFC MEA Pt/C cathode. The AGEX cycles bring about serious irreversible degradation of both Pt nanoparticles and carbon support due to a spike-like large voltage increase. We could visualize the three-dimensional distribution and two-dimensional depth map of the amount, oxidation state (valence), Pt2+ elution, detachment, and aggregation of Pt species and the formation of carbon voids, where the change and movement of the Pt species in the cathode catalyst layer during the AGEX cycles did not proceed exceeding the 1 µm region. It is very different from the case of an ADT (an accelerated durability test between 0.6-1.0 VRHE)-degraded MEA. We discuss the spatiotemporal behavior of the AGEX degradation process and the degradation mechanism.
RESUMO
A method enabling the accurate and precise correlation between structures and properties is critical to the development of efficient electrocatalysts. To this end, we developed an integrated single-electrode method (ISM) that intimately couples electrochemical rotating disk electrodes, in situ/operando X-ray absorption fine structures, and aberration-corrected transmission electron microscopy on identical electrodes. This all-in-one method allows for the one-to-one, in situ/operando, and atomic-scale correlation between structures of electrocatalysts with their electrochemical reactivities, distinct from common methods that adopt multisamples separately for electrochemical and physical characterizations. Because the atomic step is one of the most fundamentally structural elements in electrocatalysts, we demonstrated the feasibility of ISM by exploring the roles of atomic steps in the reactivity of electrocatalysts. In situ and atomic-scale evidence shows that low-coordinated atomic steps not only generate reactive species at low potentials and strengthen surface contraction but also act as templates to disturb interfacial water networks and thus affect the reactivity of electrocatalysts. This template role interprets the long-standing puzzle regarding why high-index facets are active for the oxygen reduction reaction in acidic media. The ISM as a fundamentally new method for workflows should aid the study of many other electrocatalysts regarding their nature of active sites and operative mechanisms.
RESUMO
The three-dimensional (3D) distribution and oxidation state of a Pt cathode catalyst in a practical membrane electrode assembly (MEA) were visualized in a practical polymer electrolyte fuel cell (PEFC) under fuel-cell operating conditions. Operando 3D computed-tomography imaging with X-ray absorption near edge structure (XANES) spectroscopy (CT-XANES) clearly revealed the heterogeneous migration and degradation of Pt cathode catalyst in an MEA during accelerated degradation test (ADT) of PEFC. The degradative Pt migration proceeded over the entire cathode catalyst layer and spread to MEA depth direction into the Nafion membrane.
RESUMO
We have achieved significant improvements for the oxygen reduction reaction activity and durability with new SnO2-nanoislands/Pt3Co/C catalysts in 0.1 M HClO4, which were regulated by a strategic fabrication using a new selective electrochemical Sn deposition method. The nano-SnO2/Pt3Co/C catalysts with Pt/Sn = 4/1, 9/1, 11/1, and 15/1 were characterized by STEM-EDS, XRD, XRF, XPS, in situ XAFS, and electrochemical measurements to have a Pt3Co core/Pt skeleton-skin structure decorated with SnO2 nanoislands at the compressive Pt surface with the defects and dislocations. The high performances of nano-SnO2/Pt3Co/C originate from efficient electronic modification of the Pt skin surface (site 1) by both the Co of the Pt3Co core and surface nano-SnO2 and more from the unique property of the periphery sites of the SnO2 nanoislands at the compressive Pt skeleton-skin surface (more active site 2), which were much more active than expected from the d-band center values. The white line peak intensity of the nano-SnO2/Pt3Co/C revealed no hysteresis in the potential up-down operations between 0.4 and 1.0 V versus RHE, unlike the cases of Pt/C and Pt3Co/C, resulting in the high ORR performance. Here we report development of a new class of cathode catalysts with two different active sites for next-generation polymer electrolyte fuel cells.
RESUMO
(18)F-fluoro-2-deoxy-d-glucose positron emission tomography (PET) complements conventional imaging for diagnosing and staging lung cancer. Two literature-based meta-analyses suggest that maximum standardised uptake value (SUVmax) on PET has univariate prognostic value in nonsmall cell lung cancer (NSCLC). We analysed individual data pooled from 12 studies to assess the independent prognostic value of binary SUVmax for overall survival.After searching the published literature and identifying unpublished data, study coordinators were contacted and requested to provide data on individual patients. Cox regression models stratified for study were used.Data were collected for 1526 patients (median age 64â years, 60% male, 34% squamous cell carcinoma, 47% adenocarcinoma, 58% stage I-II). The combined univariate hazard ratio for SUVmax was 1.43 (95% CI 1.22-1.66) and nearly identical if the SUV threshold was calculated stratifying for histology. Multivariate analysis of patients with stage I-III disease identified age, stage, tumour size and receipt of surgery as independent prognostic factors; adding SUV (HR 1.58, 95% CI 1.27-1.96) improved the model significantly. The only detected interaction was between SUV and stage IV disease.SUV seems to have independent prognostic value in stage I-III NSCLC, for squamous cell carcinoma and for adenocarcinoma.
Assuntos
Adenocarcinoma/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma de Células Escamosas/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Adenocarcinoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/patologia , Feminino , Fluordesoxiglucose F18 , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Estadiamento de Neoplasias , Tomografia por Emissão de Pósitrons , Prognóstico , Modelos de Riscos Proporcionais , Compostos Radiofarmacêuticos , Carga TumoralRESUMO
The electrochemical activity and durability of Pt nanoparticles on different kinds of carbon supports in oxygen reduction reactions (ORR) were investigated using rotating disc electrodes (RDE) and the membrane electrode assemblies (MEA) of polymer electrolyte fuel cells (PEFC). The mass activity of Pt/C catalysts (ORR activity per 1 mg of Pt) at the RDE decreased, according to the type of carbon support, in the following order; Ketjenblack (KB) > acetylene black (AB) > graphene > multiwall carbon nanotube (MW-CNT) > carbon black (CB), whereas the average size of the Pt nanoparticles and the surface specific activity (ORR activity per electrochemical surface area) did not vary significantly between these carbon supports. These results indicate that the different mass activities of the Pt/C catalysts may originate from the differences in the fraction of Pt on the carbon supports which is available for utilization. The durability of the MEAs of the top two active catalysts Pt/KB and Pt/AB among the five catalysts was examined based on ORR performance, TEM and in situ XAFS. It was found that the performance of the Pt/KB cathode catalyst in PEFC MEA decreased significantly over 500 accelerated durability test (ADT) cycles, whereas the performance of the Pt/AB cathode catalyst in PEFC MEA did not decrease significantly during 500 ADT cycles, it was also found that the Pt/AB possesses 8 times higher durability compared with the Pt/KB. In situ Pt LIII-edge XAFS data in the ADT cycles and stepwise potential operations revealed the different oxidation-reduction behaviors of the Pt nanoparticles on the KB and AB supports. The Pt/KB was oxidized to form surface PtO layers more easily than the Pt/AB in the increasing potential operation from 0.4 VRHE to 1.4 VRHE, and the surface PtO layers of the Pt/AB were reduced to the metallic Pt state more readily than those of the Pt/KB in the decreasing potential operation from 1.4 VRHE to 0.4 VRHE. The XAFS analysis for the Pt valences and the coordination numbers of Pt-O and Pt-Pt demonstrated that the Pt/AB catalyst is more durable than the Pt/KB catalyst in PEFC MEAs.
RESUMO
There is limited information on the mechanism for platinum oxidation and dissolution in Pt/C cathode catalyst layers of polymer electrolyte fuel cells (PEFCs) under the operating conditions though these issues should be uncovered for the development of next-generation PEFCs. Pt species in Pt/C cathode catalyst layers are mapped by a XAFS (X-ray absorption fine structure) method and by a quick-XAFS(QXAFS) method. Information on the site-preferential oxidation and leaching of Pt cathode nanoparticles around the cathode boundary and the micro-crack in degraded PEFCs is provided, which is relevant to the origin and mechanism of PEFC degradation.
RESUMO
Cerebral amyloid angiopathy-related inflammation (CAA-ri) is a rare condition primarily driven by an autoimmune reaction against cerebrovascular amyloid beta protein. Accurate diagnosis hinges on recognizing characteristic clinical symptoms and imaging features, such as asymmetric cerebral white matter lesions often linked to angioedema. We report the case of a woman in her 70s with progressive, irreversible CAA-ri who initially presented with left homonymous hemianopia and experienced significant psychiatric and neurological deterioration following an epileptic seizure. Despite initiating corticosteroid therapy seven months after onset, her condition continued to worsen, ultimately leading to her death in the 11th month due to general decline. This report reviews the clinical progression and imaging findings of the case, discusses the diagnostic process for CAA-ri, differentiates it from related conditions, and evaluates the timing of corticosteroid treatment.
RESUMO
Hexavalent iridium (IrVI) oxide is predicted to be more active and stable than any other iridium oxide for the oxygen evolution reaction in acid; however, its experimental realization remains challenging. In this work, we report the synthesis, characterization, and application of atomically dispersed IrVI oxide (IrVI-ado) for proton exchange membrane (PEM) water electrolysis. The IrVI-ado was synthesized by oxidatively substituting the ligands of potassium hexachloroiridate(IV) (K2IrCl6) with manganese oxide (MnO2). The mass-specific activity (1.7 × 105 amperes per gram of iridium) and turnover number (1.5 × 108) exceeded those of benchmark iridium oxides, and in situ x-ray analysis during PEM operations manifested the durability of IrVI at current densities up to 2.3 amperes per square centimeter. The high activity and stability of IrVI-ado showcase its promise as an anode material for PEM electrolysis.
RESUMO
Germline loss-of-function mutations in USP9X have been reported to cause a wide spectrum of congenital anomalies. Here, we report a Japanese girl with a novel heterozygous nonsense mutation in USP9X who exhibited intellectual disability with characteristic craniofacial abnormalities, including hypotelorism, brachycephaly, hypodontia, micrognathia, severe dental crowding, and an isolated submucous cleft palate. Our findings provide further evidence that disruptions in USP9X contribute to a broad range of congenital craniofacial abnormalities.
RESUMO
OBJECTIVES: This study aimed to investigate the association between the number of teeth, food intake, and cognitive function in Japanese community-dwelling older adults. METHODS: This 9-year longitudinal study included a total of 293 analyzable participants who participated in baseline and follow-up surveys. Dental status (number of teeth and periodontal pocket depth), dietary assessment using the brief-type self-administered diet history questionnaire, cognitive function, and the following confounding factors were evaluated: educational level, financial satisfaction, living situation, smoking and drinking habits, history of chronic diseases, apolipoprotein E-ε4 carrier, body mass index, handgrip strength, instrumental activities of daily living, and depressive symptomatology. The Japanese version of the Montreal Cognitive Assessment was used to evaluate cognitive function. A multinomial logistic regression analysis for the intake level of each food categorized into three groups (low, moderate, high), and a generalized estimating equation (GEE) for cognitive function over nine years were performed. RESULTS: After controlling for confounding factors, the number of teeth was shown to be associated with the intake of green-yellow vegetables and meat. Furthermore, the GEE indicated that the lowest quartile of intake of green-yellow vegetables significantly associated with lower cognitive function (unstandardized regression coefficient [B] = -0.96, 95 % confidence interval [CI]: -1.72 to -0.20), and the lowest quartile of intake of meat significantly associated with lower cognitive function (B = -1.42, 95 % CI: -2.27 to -0.58). CONCLUSIONS: The intake of green and yellow vegetables and meat, which is influenced by the number of teeth, was associated with cognitive function in Japanese community-dwelling older adults. CLINICAL SIGNIFICANCE: There are few studies that have examined the association between oral health, food intake, and cognitive function. This 9-year longitudinal study suggests that it is important to maintain natural teeth to enable the functional means to consume green-yellow vegetables and meat, and thereby help maintain cognitive function.
Assuntos
Cognição , Ingestão de Alimentos , Humanos , Estudos Longitudinais , Idoso , Masculino , Feminino , Cognição/fisiologia , Japão , Ingestão de Alimentos/fisiologia , Dieta , Verduras , Perda de Dente , Pessoa de Meia-Idade , Vida Independente , Idoso de 80 Anos ou mais , Comportamento Alimentar , Saúde Bucal , Inquéritos e Questionários , Carne , Atividades CotidianasRESUMO
Ultrasound-guided protein delivery is promising for site-specific control of cellular functions in the deep interior of the body in a noninvasive manner. Herein, we propose a method for cytosolic protein delivery based on ultrasound-guided intracellular vaporization of perfluorocarbon nano-droplets. The nano-droplets were conjugated with cargo proteins through a bio-reductively cleavable linker and introduced into living cells via antibody-mediated binding to a cell-surface receptor, which gets internalized through endocytosis. After the cells were exposed to ultrasound for endosomal escape of proteins, the ultrasound-responsive cytosolic release of a cargo enzyme was confirmed by visualizing the hydrolysis of the fluorogenic substrate using confocal microscopy. Moreover, a significant decrease in cell viability was achieved via the release of a cytotoxic protein in response to ultrasound treatment. The results of this study provide the proof of a principle that protein-conjugated nano-droplets can be used as carriers in ultrasound-guided cytosolic delivery of proteins.
Assuntos
Fluorocarbonos , Volatilização , Proteínas , Endocitose , Ultrassonografia de IntervençãoRESUMO
Determination of a reaction pathway is an important issue for the optimization of reactions. However, reactions in solid-state compounds have remained poorly understood because of their complexity and technical limitations. Here, using state-of-the-art high-speed time-resolved synchrotron X-ray techniques, the topochemical solid-gas reduction mechanisms in layered perovskite Sr3 Fe2 O7- δ (from δ ⼠0.4 to δ = 1.0), which is promising for an environmental catalyst material is revealed. Pristine Sr3 Fe2 O7- δ shows a gradual single-phase structural evolution during reduction, indicating that the reaction continuously proceeds through thermodynamically stable phases. In contrast, a nonequilibrium dynamically-disordered phase emerges a few seconds before a first-order transition during the reduction of a Pd-loaded sample. This drastic change in the reaction pathway can be explained by a change in the rate-determining step. The synchrotron X-ray technique can be applied to various solid-gas reactions and provides an opportunity for gaining a better understanding and optimizing reactions in solid-state compounds.
RESUMO
PURPOSE: Individuals with impaired masticatory function tend to prefer soft foods, which results in decreased masticatory muscle activity. This study examined the association between the oral condition (number of teeth, occlusal force, and occlusal contact area) and dietary hardness using a daily dietary questionnaire. METHODS: This cross-sectional study evaluated 1841 participants aged 69-71 and 79-81 years. Registered dentists examined the number of teeth, occlusal force, and occlusal contact area. Dietary hardness was defined as the estimated masticatory muscle activity required for a habitual diet. Habitual diet during the preceding month was assessed using a brief self-administered diet history questionnaire. Confounding factors, such as age, sex, socioeconomic status, smoking habits, history of chronic diseases (hypertension, hyperlipidemia, and diabetes), and cognitive function were also evaluated. Multivariate linear regression analyses were performed to assess the association between dietary hardness and each oral condition. RESULTS: Occlusal force (standardized regression coefficients [ß]=0.08, P < 0.01) and occlusal contact area (ß=0.06, P < 0.01) were significantly associated with dietary hardness after adjusting for the confounding factors. Number of teeth was not significantly associated with dietary hardness. In addition, the associations between dietary hardness, sex, and a history of diabetes were stronger than those between dietary hardness and oral factors. CONCLUSIONS: Occlusal force and contact area were significantly associated with dietary hardness as estimated from the masticatory muscle activity using a daily diet questionnaire.
RESUMO
BACKGROUND: Frailty increases the risk of negative health-related events, such as falls, disability, hospitalizations, and death. Although the association between oral health and physical frailty is well established, the relationship between oral health and psychological frailty has not yet been investigated. Therefore, we conducted a cross-sectional study to examine the association between maximal occlusal force and psychological frailty in Japanese community-dwelling older adults. METHODS: Psychological frailty was defined as a World Health Organization-5 scale (WHO-5) score of <13, cognitive and functional status was defined as a Japanese version of the Montreal Cognitive Assessment (MoCA-J) score of <23, and psychological robustness was defined as a WHO-5 score of ≥13 and a MoCA-J score of ≥23. We used a cross-sectional study design to measure maximal occlusal force in 1810 participants, and examined the following factors relevant to psychological frailty: educational level, financial status, living situation, history of chronic diseases, handgrip strength, and instrumental activities of daily living. We used propensity score matching to match the psychological frailty and psychological robustness groups according to demographic and confounding factors. This process, resulted in 344 participants, of whom 172 were in the psychological frailty group and 172 were in the psychological robustness group. In the matched cohort, differences between groups with and without psychological frailty were compared using generalized estimating equations for maximal occlusal force after adjusting for the number of teeth. RESULTS: After controlling for potential confounding factors of frailty, the psychological frailty group showed lower maximal occlusal force compared with the psychological robustness group (unstandardized regression coefficients = -72.7, 95% confidence interval: -126.3 to -19.1). CONCLUSIONS: Maximal occlusal force was associated with a reduced prevalence of psychological frailty among Japanese community-dwelling older adults participating in our study.
Assuntos
Força de Mordida , Fragilidade , Idoso , Idoso de 80 Anos ou mais , Humanos , Atividades Cotidianas , Centenários , Estudos Transversais , População do Leste Asiático , Idoso Fragilizado , Fragilidade/epidemiologia , Avaliação Geriátrica , Força da Mão , Vida Independente , Japão/epidemiologia , Nonagenários , OctogenáriosRESUMO
OBJECTIVES: Reduced occlusal support is thought to be related to a decline in masticatory performance. However, previous research in this field was based on cross-sectional studies. In this study, we conducted a 6-year longitudinal observation of older adults living in the community and examined the associations of changes in occlusal support with masticatory performance. METHODS: Of the 864 participants aged 72-74 years in the SONIC study, 488 who were followed up (median follow-up period 5.92 years) and had no missing data were included in this study. Participants were divided into three groups according to the number of occlusal support zones in the posterior area: Complete occlusion (four zones), Reduced occlusion (one to three zones), and Collapsed occlusion (no occlusal support zone). Longitudinal analysis of the relationship between occlusal support and masticatory performance was undertaken with linear mixed-effects models. RESULTS: Sex, occlusal force, number of unreplaced missing teeth, aging, and occlusal support change were significantly related to masticatory performance. Furthermore, the interaction term between change in occlusal support and aging was a significant explanatory variable for the decline in masticatory performance. The interaction was strongest in the group that changed from Complete or Reduced occlusion to Collapsed occlusion. This result indicates that the loss of occlusal support is a major factor contributing to declining masticatory performance. CONCLUSIONS: The decline of occlusal support was greatly associated with the deterioration of masticatory performance. Our results suggest that older adults need to prevent the collapse of posterior occlusal support to maintain their masticatory performance. CLINICAL SIGNIFICANCE: Occlusal support is important for preserving masticatory performance in older adults. Preventing the loss of molars and retaining occlusal support may contribute to maintaining food intake diversity and nutritional status, thereby improving quality of life. Dental professionals need to carefully examine dental status to assess the risk of occlusal collapse.
Assuntos
Mastigação , Qualidade de Vida , Humanos , Idoso , Estudos Transversais , Oclusão Dentária , Força de MordidaRESUMO
There is little information on the spatial distribution, migration, and valence of Ce species doped as an efficient radical scavenger in a practical polymer electrolyte fuel cell (PEFC) for commercial fuel cell vehicles (FCVs) closely related to a severe reliability issue for long-term PEFC operation. An in situ three-dimensional fluorescence computed tomography-X-ray absorption fine structure (CT-XAFS) imaging technique and an in situ same-view nano-XAFS-scanning electron microscopy (SEM)/energy-dispersive spectrometry (EDS) combination technique were applied for the first time to perform operando spatial visualization and depth-profiling analysis of Ce radical scavengers in a practical PEFC of Toyota MIRAI FCV under PEFC operating conditions. Using these in situ techniques, we successfully visualized and analyzed the domain, density, valence, and migration of Ce scavengers that were heterogeneously distributed in the components of PEFC, such as anode microporous layer, anode catalyst layer, polymer electrolyte membrane (PEM), cathode catalyst layer, and cathode microporous layer. The average Ce valence states in the whole PEFC and PEM were 3.9+ and 3.4+, respectively, and the Ce3+/Ce4+ ratios in the PEM under H2 (anode)-N2 (cathode) at an open-circuit voltage (OCV), H2-air at 0.2 A cm-2, and H2-air at 0.0 A cm-2 were 70 ± 5:30 ± 5%, as estimated by both in situ fluorescence CT-X-ray absorption near-edge spectroscopy (XANES) and nano-XANES-SEM/EDS techniques. The Ce3+ migration rates in the electrolyte membrane toward the anode and cathode electrodes ranged from 0.3 to 3.8 µm h-1, depending on the PEFC operating conditions. Faster Ce3+ migration was not observed with voltage transient response processes by highly time-resolved (100 ms) and spatially resolved (200 nm) nano-XANES imaging. Ce3+ ions were suggested to be coordinated with both Nafion sulfonate (Nfsul) groups and water to form [Ce(Nfsul)x(H2O)y]3+. The Ce migration behavior may also be affected by the spatial density of Ce, interactions of Ce with Nafion, thickness and states of the PEM, and H2O convection, in addition to the PEFC operating conditions. The unprecedented operando imaging of Ce radical scavengers in the practical PEFCs by both in situ three-dimensional (3D) fluorescence CT-XAFS imaging and in situ depth-profiling nano-XAFS-SEM/EDS techniques yields intriguing insights into the spatial distribution, chemical states, and behavior of Ce scavengers under the working conditions for the development of next-generation PEFCs with high long-term reliability and durability.