Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Gene Ther ; 30(3-4): 386-397, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36258038

RESUMO

Gene editing for the cure of inborn errors of metabolism (IEMs) has been limited by inefficiency of adult hepatocyte targeting. Here, we demonstrate that in utero CRISPR/Cas9-mediated gene editing in a mouse model of hereditary tyrosinemia type 1 provides stable cure of the disease. Following this, we performed an extensive gene expression analysis to explore the inherent characteristics of fetal/neonatal hepatocytes that make them more susceptible to efficient gene editing than adult hepatocytes. We showed that fetal and neonatal livers are comprised of proliferative hepatocytes with abundant expression of genes involved in homology-directed repair (HDR) of DNA double-strand breaks (DSBs), key for efficient gene editing by CRISPR/Cas9. We demonstrated the same is true of hepatocytes after undergoing a regenerative stimulus (partial hepatectomy), where post-hepatectomy cells show a higher efficiency of HDR and correction. Specifically, we demonstrated that HDR-related genome correction is most effective in the replicative phase, or S-phase, of an actively proliferating cell. In conclusion, this study shows that taking advantage of or triggering cell proliferation, specifically DNA replication in S-phase, may serve as an important tool to improve efficiency of CRISPR/Cas9-mediated genome editing in the liver and provide a curative therapy for IEMs in both children and adults.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Camundongos , Reparo de DNA por Recombinação , Quebras de DNA de Cadeia Dupla , DNA , Reparo do DNA
2.
J Inherit Metab Dis ; 44(6): 1369-1381, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33896013

RESUMO

Phenylketonuria (PKU) is the most common inborn error of metabolism of the liver, and results from mutations of both alleles of the phenylalanine hydroxylase gene (PAH). As such, it is a suitable target for gene therapy via gene delivery with a recombinant adeno-associated virus (AAV) vector. Here we use the synthetic AAV vector Anc80 via systemic administration to deliver a functional copy of a codon-optimized human PAH gene, with or without an intron spacer, to the Pahenu2 mouse model of PKU. Dose-dependent transduction of the liver and expression of PAH mRNA were present with both vectors, resulting in significant and durable reduction of circulating phenylalanine, reaching near control levels in males. Coat color of treated Pahenu2 mice reflected an increase in pigmentation from brown to the black color of control animals, further indicating functional restoration of phenylalanine metabolism and its byproduct melanin. There were no adverse effects associated with administration of AAV up to 5 × 1012 VG/kg, the highest dose tested. Only minor and/or transient variations in some liver enzymes were observed in some of the AAV-dosed animals which were not associated with pathology findings in the liver. Finally, there was no impact on cell turnover or apoptosis as evaluated by Ki-67 and TUNEL staining, further supporting the safety of this approach. This study demonstrates the therapeutic potential of AAV Anc80 to safely and durably cure PKU in a mouse model, supporting development for clinical consideration.


Assuntos
Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Fenilalanina Hidroxilase/genética , Fenilcetonúrias/terapia , Animais , Linhagem Celular , DNA Recombinante/administração & dosagem , Modelos Animais de Doenças , Feminino , Vetores Genéticos/genética , Cor de Cabelo , Humanos , Injeções Intravenosas , Fígado/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenilalanina/sangue , Fenilalanina Hidroxilase/imunologia , Fenilalanina Hidroxilase/metabolismo , Transdução Genética/métodos
3.
Nat Commun ; 13(1): 5012, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008405

RESUMO

Conventional therapy for hereditary tyrosinemia type-1 (HT1) with 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) delays and in some cases fails to prevent disease progression to liver fibrosis, liver failure, and activation of tumorigenic pathways. Here we demonstrate cure of HT1 by direct, in vivo administration of a therapeutic lentiviral vector targeting the expression of a human fumarylacetoacetate hydrolase (FAH) transgene in the porcine model of HT1. This therapy is well tolerated and provides stable long-term expression of FAH in pigs with HT1. Genomic integration displays a benign profile, with subsequent fibrosis and tumorigenicity gene expression patterns similar to wild-type animals as compared to NTBC-treated or diseased untreated animals. Indeed, the phenotypic and genomic data following in vivo lentiviral vector administration demonstrate comparative superiority over other therapies including ex vivo cell therapy and therefore support clinical application of this approach.


Assuntos
Lesões Pré-Cancerosas , Tirosinemias , Animais , Modelos Animais de Doenças , Terapia Genética , Humanos , Hidrolases/genética , Hidrolases/metabolismo , Cirrose Hepática/terapia , Nitrobenzoatos/farmacologia , Nitrobenzoatos/uso terapêutico , Suínos , Tirosinemias/genética , Tirosinemias/terapia
4.
PLoS One ; 16(1): e0245831, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33493163

RESUMO

Phenylketonuria (PKU) is a metabolic disorder whereby phenylalanine metabolism is deficient due to allelic variations in the gene for phenylalanine hydroxylase (PAH). There is no cure for PKU other than orthotopic liver transplantation, and the standard of care for patients is limited to dietary restrictions and key amino acid supplementation. Therefore, Pah was edited in pig fibroblasts for the generation of PKU clone piglets that harbor a common and severe human mutation, R408W. Additionally, the proximal region to the mutation was further humanized by introducing 5 single nucleotide polymorphisms (SNPs) to allow for development of gene editing machinery that could be translated directly from the pig model to human PKU patients that harbor at least one classic R408W allele. Resulting piglets were hypopigmented (a single Ossabaw piglet) and had low birthweight (all piglets). The piglets had similar levels of PAH expression, but no detectable enzymatic activity, consistent with the human phenotype. The piglets were fragile and required extensive neonatal care to prevent failure to thrive and early demise. Phenylalanine levels rose sharply when dietary Phe was unrestricted but could be rapidly reduced with a low Phe diet. Fibroblasts isolated from R408W piglets show susceptibility to correction using CRISPR or TALEN, with subsequent homology-directed recombination to correct Pah. This pig model of PKU provides a powerful new tool for development of all classes of therapeutic candidates to treat or cure PKU, as well as unique value for proof-of-concept studies for in vivo human gene editing platforms in the context of this humanized PKU allele.


Assuntos
Edição de Genes/métodos , Mutação , Fenilalanina Hidroxilase/genética , Fenilcetonúrias/genética , Animais , Sequência de Bases , Modelos Animais de Doenças , Humanos , Fenótipo , Segurança , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA