Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 945: 173998, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38901575

RESUMO

Globally, power stations generate huge amounts of the hazardous waste heavy oil fly ash (HOFA), which is rich in Ni, V, Fe, S, and dumped into landfills. Thus, exploring new approaches for a safe recycling and sustainable management of HOFA is needed and of great environmental interest. The potential application of HOFA as an amendment to sandy soils has not been studied yet. This is the first research investigating the potentiality of using HOFA as a soil conditioner. To this end, we conducted a greenhouse experiment in order to investigate the impacts of HOFA addition (1.2, 2.4, 3.6 t ha-1) to sandy soil on the total and available content of nutrients (e.g., S, Fe, Mn, Cu, Zn) and toxic elements (TEs; e.g., Cd, Co, Cr, Ni, Pb, V) in the soil and their phytoextraction and translocation by lemongrass (Cymbopogon citratus) and common sage (Salvia officinalis). We also assessed the impact of humic acid (HA) foliar application (50 and 100 l ha-1) on the growth and elements accumulation by the two plants. The studied HOFA was acidic and highly enriched in S (43,268.0), V (3,527.0), Ni (1774.0), and Fe (15,159.0) (units in mg kg-1). The X-ray absorption near edge structure (XANES) data showed that V in HOFA was composed primarily of V(IV) sorbed onto goethite, V(V) sorbed onto humic substances, in the forms of V2O3, and VCl4. Addition of the lower doses of HOFA (1.2 and 2.4 t ha-1) did not change significantly soil pH, salinity, and the total and available elements content compared to the unamended soil. Although the elements content in the 3.6 t ha-1 HOFA-treated soil was significantly higher than the untreated, the total content of all elements (except for Ni) was lower than the maximum allowable concentrations in soils. HOFA addition, particularly in the highest dose (3.6 t ha-1), decreased significantly the growth and biomass of both plants. Common sage accumulated more elements than lemongrass; however, the elements content in the plants was lower than the critical concentrations for sensitive plants. The foliar application of humic acid enhanced significantly the plant growth and increased their tolerance to the HOFA-induced stress. We conclude that the addition of HOFA up to 2.4 t ha-1 in a single application as amendment to sandy soils is not likely to create any TE toxicity problems to plants, particularly if combined with a foliar application of humic acid; however, repeated additions of HOFA may induce toxicity. These findings should be verified under field conditions.


Assuntos
Cinza de Carvão , Substâncias Húmicas , Poluentes do Solo , Solo , Poluentes do Solo/análise , Solo/química , Cymbopogon , Fertilizantes , Enxofre , Metais Pesados/análise
2.
Polymers (Basel) ; 15(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37571197

RESUMO

NDBs were fabricated from gum Arabic (GA) and polyvinyl alcohol (PVA) in different ratios using novel techniques (casting, dehydration, and peeling). The GA/PVA blends were cast with a novel vibration-free horizontal flow (VFHF) technique, producing membranes free of air bubble defects with a homogenous texture, smooth surface, and constant thickness. The casting process was achieved on a self-electrostatic template (SET) made of poly-(methyl methacrylate), which made peeling the final product membranes easy due to its non-stick behavior. After settling the casting of the membranous, while blind, the sheets were dried using nanometric dehydration under a mild vacuum stream using a novel stratified nano-dehydrator (SND) loaded with P2O5. After drying the NDB, the dry, smooth membranes were peeled easily without scratching defects. The physicochemical properties of the NDBs were investigated using FTIR, XRD, TGA, DTA, and AFM to ensure that the novel techniques did not distort the product quality. The NDBs retained their virgin characteristics, namely, their chemical functional groups (FTIR results), crystallinity index (XRD data), thermal stability (TGA and DTA), and ultrastructural features (surface roughness and permeability), as well as their microbial biodegradation ability. Adding PVA enhanced the membrane's properties except for mass loss, whereby increasing the GA allocation in the NDB blend reduces its mass loss at elevated temperatures. The produced bioplastic membranes showed suitable mechanical properties for food packaging applications and in the pharmaceutical industry for the controlled release of drugs. In comparison to control samples, the separated bacteria and fungi destroyed the bioplastic membranes. Pseudomonas spp. and Bacillus spp. were the two main strains of isolated bacteria, and Rhizobus spp. was the main fungus. The nano-dehydration method gave the best solution for the prompt drying of water-based biopolymers free of manufacturing defects, with simple and easily acquired machinery required for the casting and peeling tasks, in addition to its wonderful biodegradation behavior when buried in wet soil.

3.
Polymers (Basel) ; 15(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37242830

RESUMO

A microwave hot pressing machine (MHPM) was used to heat the colander to produce fixed oils from each of castor, sunflower, rapeseed, and moringa seed and compared them to those obtained using an ordinary electric hot pressing machine (EHPM). The physical properties, namely the moisture content of seed (MCs), the seed content of fixed oil (Scfo), the yield of the main fixed oil (Ymfo), the yield of recovered fixed oil (Yrfo), extraction loss (EL), six Efficiency of fixed oil extraction (Efoe), specific gravity (SGfo), refractive index (RI) as well as chemical properties, namely iodine number (IN), saponification value (SV), acid value (AV), and the yield of fatty acid (Yfa) of the four oils extracted by the MHPM and EHPM were determined. Chemical constituents of the resultant oil were identified using GC/MS after saponification and methylation processes. The Ymfo and SV obtained using the MHPM were higher than those for the EHPM for all four fixed oils studied. On the other hand, each of the SGfo, RI, IN, AV, and pH of the fixed oils did not alter statistically due to changing the heating tool from electric band heaters into a microwave beam. The qualities of the four fixed oils extracted by the MHPM were very encouraging as a pivot of the industrial fixed oil projects compared to the EHPM. The prominent fatty acid of the castor fixed oil was found to be ricinoleic acid, making up 76.41% and 71.99% contents of oils extracted using the MHPM and EHPM, respectively. In addition, the oleic acid was the prominent fatty acid in each of the fixed oils of sunflower, rapeseed, and moringa species, and its yield by using the MHPM was higher than that for the EHPM. The role of microwave irradiation in facilitating fixed oil extrusion from the biopolymeric structured organelles (lipid bodies) was protruded. Since it was confirmed by the present study that using microwave irradiation is simple, facile, more eco-friendly, cost-effective, retains parent quality of oils, and allows for the warming of bigger machines and spaces, we think it will make an industrial revolution in oil extraction field.

4.
Polymers (Basel) ; 15(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37376306

RESUMO

Passivated-carbon quantum dots (P-CQDs) have been attracting great interest as an antimicrobial therapy tool due to their bright fluorescence, lack of toxicity, eco-friendly nature, simple synthetic schemes, and possession of photocatalytic functions comparable to those present in traditional nanometric semiconductors. Besides synthetic precursors, CQDs can be synthesized from a plethora of natural resources including microcrystalline cellulose (MCC) and nanocrystalline cellulose (NCC). Converting MCC into NCC is performed chemically via the top-down route, while synthesizing CODs from NCC can be performed via the bottom-up route. Due to the good surface charge status with the NCC precursor, we focused in this review on synthesizing CQDs from nanocelluloses (MCC and NCC) since they could become a potential source for fabricating carbon quantum dots that are affected by pyrolysis temperature. There are several P-CQDs synthesized with a wide spectrum of featured properties, namely functionalized carbon quantum dots (F-CQDs) and passivated carbon quantum dots (P-CQDs). There are two different important P-CQDs, namely 2,2'-ethylenedioxy-bis-ethylamine (EDA-CQDs) and 3-ethoxypropylamine (EPA-CQDs), that have achieved desirable results in the antiviral therapy field. Since NoV is the most common dangerous cause of nonbacterial, acute gastroenteritis outbreaks worldwide, this review deals with NoV in detail. The surficial charge status (SCS) of the P-CQDs plays an important role in their interactions with NoVs. The EDA-CQDs were found to be more effective than EPA-CQDs in inhibiting the NoV binding. This difference may be attributed to their SCS as well as the virus surface. EDA-CQDs with surficial terminal amino (-NH2) groups are positively charged at physiological pH (-NH3+), whereas EPA-CQDs with surficial terminal methyl groups (-CH3) are not charged. Since the NoV particles are negatively charged, they are attracted to the positively charged EDA-CQDs, resulting in enhancing the P-CQDs concentration around the virus particles. The carbon nanotubes (CNTs) were found to be comparable to the P-CQDs in the non-specific binding with NoV capsid proteins, through complementary charges, π-π stacking, and/or hydrophobic interactions.

5.
Polymers (Basel) ; 15(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36616491

RESUMO

In this paper, crude flakes (CFs) of shellac were converted into purified, nonwoven, thermospun fibers (shellac floss) using two devices, namely, an electric thermospinner (ETS) and a microwave thermospinner (MTS). This conversion was achieved by the action of heating and the centrifugal forces that arose toward the outside of the spinner-head cavity. The dissolved MTS floss was bleached using hydrogen peroxide to produce the bleached MTS floss. The unbleached shellac (CFs, ETS floss, and MTS floss) and the bleached MTS floss were characterized physically and chemically. There was no deterioration in the floss properties due to the heating tools or bleaching process. For the unbleached shellac, although there were no statistical differences in properties among the three shellac types (CFs, ETS floss, and MTS floss), except for insolubility in hot alcohol, acid value, and moisture content, the MTS floss exhibited superior values compared with the other types for nearly all the properties studied. Bleaching the MTS floss produced the greatest color change among other studies, caused a high reduction in insoluble solid matter due to increasing the solubility of some of the solid constituents of shellac, and slightly decreased its Young's modulus (E). The important dental applications were surveyed and it was suggested that the suitability was enhanced by using the bleached MTS floss, based on its superior whiteness, along with the unique properties detected.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA