Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039153

RESUMO

Müllerian mimicry provides natural replicates ideal for exploring mechanisms underlying adaptive phenotypic divergence and convergence, yet the genetic mechanisms underlying mimetic variation remain largely unknown. The current study investigates the genetic basis of mimetic color pattern variation in a highly polymorphic bumble bee, Bombus breviceps (Hymenoptera, Apidae). In South Asia, this species and multiple comimetic species converge onto local Müllerian mimicry patterns by shifting the abdominal setal color from orange to black. Genetic crossing between the orange and black phenotypes suggested the color dimorphism being controlled by a single Mendelian locus, with the orange allele being dominant over black. Genome-wide association suggests that a locus at the intergenic region between 2 abdominal fate-determining Hox genes, abd-A and Abd-B, is associated with the color change. This locus is therefore in the same intergenic region but not the same exact locus as found to drive red black midabdominal variation in a distantly related bumble bee species, Bombus melanopygus. Gene expression analysis and RNA interferences suggest that differential expression of an intergenic long noncoding RNA between abd-A and Abd-B at the onset setal color differentiation may drive the orange black color variation by causing a homeotic shift late in development. Analysis of this same color locus in comimetic species reveals no sequence association with the same color shift, suggesting that mimetic convergence is achieved through distinct genetic routes. Our study establishes Hox regions as genomic hotspots for color pattern evolution in bumble bees and demonstrates how pleiotropic developmental loci can drive adaptive radiations in nature.


Assuntos
Mimetismo Biológico , Estudo de Associação Genômica Ampla , Abelhas/genética , Animais , Fenótipo , Mimetismo Biológico/genética , Edição de Genes , DNA Intergênico/genética
2.
J Exp Biol ; 226(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37578032

RESUMO

Climate change poses a threat to organisms across the world, with cold-adapted species such as bumble bees (Bombus spp.) at particularly high risk. Understanding how organisms respond to extreme heat events associated with climate change as well as the factors that increase resilience or prime organisms for future stress can inform conservation actions. We investigated the effects of heat stress within different contexts (duration, periodicity, with and without access to food, and in the laboratory versus field) on bumble bee (Bombus impatiens) survival and heat tolerance. We found that both prolonged (5 h) heat stress and nutrition limitation were negatively correlated with worker bee survival and thermal tolerance. However, the effects of these acute stressors were not long lasting (no difference in thermal tolerance among treatment groups after 24 h). Additionally, intermittent heat stress, which more closely simulates the forager behavior of leaving and returning to the nest, was not negatively correlated with worker thermal tolerance. Thus, short respites may allow foragers to recover from thermal stress. Moreover, these results suggest there is no priming effect resulting from short- or long-duration exposure to heat - bees remained equally sensitive to heat in subsequent exposures. In field-caught bumble bees, foragers collected during warmer versus cooler conditions exhibited similar thermal tolerance after being allowed to recover in the lab for 16 h. These studies offer insight into the impacts of a key bumble bee stressor and highlight the importance of recovery duration, stressor periodicity and context on bumble bee thermal tolerance outcomes.


Assuntos
Hipotermia Induzida , Termotolerância , Abelhas , Animais , Alimentos , Comportamento Alimentar
3.
Biol Lett ; 19(3): 20220513, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36855854

RESUMO

The morphology of insect-induced galls contributes to defences of the gall-inducing insect species against its natural enemies. In terms of gall chemistry, the only defensive compounds thus far identified in galls are tannins that accumulate in many galls, preventing damage by herbivores. Intrigued by the fruit-like appearance of the translucent oak gall (TOG; Amphibolips nubilipennis, Cynipidae, Hymenoptera) induced on red oak (Quercus rubra), we hypothesized that its chemical composition may deviate from other galls. We found that the pH of the gall is between 2 and 3, making it among the lowest pH levels found in plant tissues. We examined the organic acid content of TOG and compared it to fruits and other galls using high-performance liquid chromatography and gas chromatography-mass spectrometry. Malic acid, an acid with particularly high abundance in apples, represents 66% of the organic acid detected in TOGs. The concentration of malic acid was two times higher than in other galls and in apples. Gall histology showed that the acid-containing cells were enlarged and vacuolized just like fruits mesocarp cells. Accumulation of organic acid in gall tissues is convergent with fruit morphology and may constitute a new defensive strategy against predators and parasitoids.


Assuntos
Malatos , Quercus , Frutas , Herbivoria
4.
Nature ; 534(7605): 106-10, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27251285

RESUMO

The wing patterns of butterflies and moths (Lepidoptera) are diverse and striking examples of evolutionary diversification by natural selection. Lepidopteran wing colour patterns are a key innovation, consisting of arrays of coloured scales. We still lack a general understanding of how these patterns are controlled and whether this control shows any commonality across the 160,000 moth and 17,000 butterfly species. Here, we use fine-scale mapping with population genomics and gene expression analyses to identify a gene, cortex, that regulates pattern switches in multiple species across the mimetic radiation in Heliconius butterflies. cortex belongs to a fast-evolving subfamily of the otherwise highly conserved fizzy family of cell-cycle regulators, suggesting that it probably regulates pigmentation patterning by regulating scale cell development. In parallel with findings in the peppered moth (Biston betularia), our results suggest that this mechanism is common within Lepidoptera and that cortex has become a major target for natural selection acting on colour and pattern variation in this group of insects.


Assuntos
Mimetismo Biológico/genética , Borboletas/genética , Genes de Insetos/genética , Pigmentação/genética , Asas de Animais/fisiologia , Animais , Mimetismo Biológico/fisiologia , Borboletas/citologia , Borboletas/fisiologia , Cor , Evolução Molecular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Fenótipo , Pigmentação/fisiologia , Seleção Genética/genética
5.
Proc Natl Acad Sci U S A ; 116(24): 11857-11865, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31043564

RESUMO

Natural phenotypic radiations, with their high diversity and convergence, are well-suited for informing how genomic changes translate to natural phenotypic variation. New genomic tools enable discovery in such traditionally nonmodel systems. Here, we characterize the genomic basis of color pattern variation in bumble bees (Hymenoptera, Apidae, Bombus), a group that has undergone extensive convergence of setal color patterns as a result of Müllerian mimicry. In western North America, multiple species converge on local mimicry patterns through parallel shifts of midabdominal segments from red to black. Using genome-wide association, we establish that a cis-regulatory locus between the abdominal fate-determining Hox genes, abd-A and Abd-B, controls the red-black color switch in a western species, Bombus melanopygus Gene expression analysis reveals distinct shifts in Abd-B aligned with the duration of setal pigmentation at the pupal-adult transition. This results in atypical anterior Abd-B expression, a late developmental homeotic shift. Changing expression of Hox genes can have widespread effects, given their important role across segmental phenotypes; however, the late timing reduces this pleiotropy, making Hox genes suitable targets. Analysis of this locus across mimics and relatives reveals that other species follow independent genetic routes to obtain the same phenotypes.


Assuntos
Abelhas/genética , Pigmentação/genética , Animais , Cor , Estudo de Associação Genômica Ampla/métodos , Proteínas de Homeodomínio/genética , América do Norte , Fenótipo , Especificidade da Espécie
6.
Mol Phylogenet Evol ; 156: 107023, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33253830

RESUMO

Ichneumonoidea is one of the most diverse lineages of animals on the planet with >48,000 described species and many more undescribed. Parasitoid wasps of this superfamily are mostly beneficial insects that attack and kill other arthropods and are important for understanding diversification and the evolution of life history strategies related to parasitoidism. Further, some lineages of parasitoids within Ichneumonoidea have acquired endogenous virus elements (EVEs) that are permanently a part of the wasp's genome and benefit the wasp through host immune disruption and behavioral control. Unfortunately, understanding the evolution of viral acquisition, parasitism strategies, diversification, and host immune disruption mechanisms, is deeply limited by the lack of a robust phylogenetic framework for Ichneumonoidea. Here we design probes targeting 541 genes across 91 taxa to test phylogenetic relationships, the evolution of parasitoid strategies, and the utility of probes to capture polydnavirus genes across a diverse array of taxa. Phylogenetic relationships among Ichneumonoidea were largely well resolved with most higher-level relationships maximally supported. We noted codon use biases between the outgroups, Braconidae, and Ichneumonidae and within Pimplinae, which were largely solved through analyses of amino acids rather than nucleotide data. These biases may impact phylogenetic reconstruction and caution for outgroup selection is recommended. Ancestral state reconstructions were variable for Braconidae across analyses, but consistent for reconstruction of idiobiosis/koinobiosis in Ichneumonidae. The data suggest many transitions between parasitoid life history traits across the whole superfamily. The two subfamilies within Ichneumonidae that have polydnaviruses are supported as distantly related, providing strong evidence for two independent acquisitions of ichnoviruses. Polydnavirus capture using our designed probes was only partially successful and suggests that more targeted approaches would be needed for this strategy to be effective for surveying taxa for these viral genes. In total, these data provide a robust framework for the evolution of Ichneumonoidea.


Assuntos
Himenópteros/genética , Himenópteros/virologia , Parasitos/fisiologia , Filogenia , Vírus/metabolismo , Animais , Sequência de Bases , Teorema de Bayes , Himenópteros/classificação , Funções Verossimilhança
7.
Oecologia ; 193(3): 619-630, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32671460

RESUMO

While morphological differences such as tongue length are often featured as drivers of pollinator floral preferences, differences in chemical detection and tolerance to secondary compounds may also play a role. We sought to better understand the role of secondary compounds in floral preference by examining visitation of milkweed flowers, which can contain toxic cardenolides in their nectar, by bumble bees (Bombus spp.), some of their most abundant and important pollinators. We examine bumble bee species visitation of common milkweed (Asclepias syriaca) compared to other flowers in the field and test whether observed preferences may be influenced by avoidance and tolerance of cardenolides, as measured by the cardenolide ouabain, in the lab. We reveal that common milkweed is visited predominantly by one bumble bee species, Bombus griseocollis, in a ratio much higher than the abundance of this species in the community. We confirmed the presence and toxicity of cardenolides in A. syriaca nectar. Lab experiments revealed that B. griseocollis, compared to the common bumble bees B. impatiens and B. bimaculatus, exhibit greater avoidance of cardenolides, but only at levels that start to induce illness, whereas the other species exhibit either no or reduced avoidance of cardenolides, resulting in illness and mortality in these bees. Toxicity experiments reveal that B. griseocollis also has a substantially higher tolerance for cardenolides than B. impatiens. Together, these results support a potential evolutionary association between B. griseocollis and milkweed that may involve increased ability to both detect and tolerate milkweed cardenolides.


Assuntos
Asclepias , Néctar de Plantas , Animais , Abelhas , Flores , Polinização
8.
Proc Biol Sci ; 286(1910): 20191501, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31506052

RESUMO

Müllerian mimicry theory states that frequency-dependent selection should favour geographical convergence of harmful species onto a shared colour pattern. As such, mimetic patterns are commonly circumscribed into discrete mimicry complexes, each containing a predominant phenotype. Outside a few examples in butterflies, the location of transition zones between mimicry complexes and the factors driving mimicry zones has rarely been examined. To infer the patterns and processes of Müllerian mimicry, we integrate large-scale data on the geographical distribution of colour patterns of social bumblebees across the contiguous United States and use these to quantify colour pattern mimicry using an innovative, unsupervised machine-learning approach based on computer vision. Our data suggest that bumblebees exhibit geographically clustered, but sometimes imperfect colour patterns, and that mimicry patterns gradually transition spatially rather than exhibit discrete boundaries. Additionally, examination of colour pattern transition zones of three comimicking, polymorphic species, where active selection is driving phenotype frequencies, revealed that their transition zones differ in location within a broad region of poor mimicry. Potential factors influencing mimicry transition zone dynamics are discussed.


Assuntos
Abelhas/fisiologia , Mimetismo Biológico , Aprendizado de Máquina não Supervisionado , Animais
9.
PLoS Biol ; 13(1): e1002033, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25562316

RESUMO

Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility.


Assuntos
Estudos de Associação Genética , Animais , Biologia Computacional , Curadoria de Dados , Bases de Dados Factuais/normas , Interação Gene-Ambiente , Genômica , Humanos , Fenótipo , Padrões de Referência , Reprodutibilidade dos Testes , Terminologia como Assunto
10.
J Chem Ecol ; 44(9): 838-850, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29785629

RESUMO

In eusocial insects, the high cost of altruistic cooperation between colony members has favoured the evolution of cheaters that exploit social services of other species. In the most extreme forms of insect social parasitism, which has evolved multiple times across most social lineages, obligately parasitic species invade the nests of social species and manipulate the workforce of their hosts to rear their own reproductive offspring. As alien species that have lost their own sociality, these social parasites still face social challenges to infiltrate and control their hosts, thus providing independent replicates for understanding the mechanisms essential to social dominance. This review compares socially parasitic insect lineages to find general trends and build a hypothetical framework for the means by which social parasites achieve reproductive dominance. It highlights how host social organization and social parasite life history traits may impact the way they achieve reproductive supremacy, including the potential role of chemical cues. The review discusses the coevolutionary dynamics between host and parasite during this process. Altogether, this review emphasizes the value of social parasites for understanding social evolution and the need for future research in this area.


Assuntos
Insetos/fisiologia , Parasitos/fisiologia , Reprodução , Animais , Comportamento Animal/efeitos dos fármacos , Feminino , Interações Hospedeiro-Parasita/efeitos dos fármacos , Feromônios/química , Feromônios/farmacologia
11.
Genome Res ; 23(8): 1248-57, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23674305

RESUMO

Identifying the genetic changes driving adaptive variation in natural populations is key to understanding the origins of biodiversity. The mosaic of mimetic wing patterns in Heliconius butterflies makes an excellent system for exploring adaptive variation using next-generation sequencing. In this study, we use a combination of techniques to annotate the genomic interval modulating red color pattern variation, identify a narrow region responsible for adaptive divergence and convergence in Heliconius wing color patterns, and explore the evolutionary history of these adaptive alleles. We use whole genome resequencing from four hybrid zones between divergent color pattern races of Heliconius erato and two hybrid zones of the co-mimic Heliconius melpomene to examine genetic variation across 2.2 Mb of a partial reference sequence. In the intergenic region near optix, the gene previously shown to be responsible for the complex red pattern variation in Heliconius, population genetic analyses identify a shared 65-kb region of divergence that includes several sites perfectly associated with phenotype within each species. This region likely contains multiple cis-regulatory elements that control discrete expression domains of optix. The parallel signatures of genetic differentiation in H. erato and H. melpomene support a shared genetic architecture between the two distantly related co-mimics; however, phylogenetic analysis suggests mimetic patterns in each species evolved independently. Using a combination of next-generation sequencing analyses, we have refined our understanding of the genetic architecture of wing pattern variation in Heliconius and gained important insights into the evolution of novel adaptive phenotypes in natural populations.


Assuntos
Borboletas/genética , Evolução Molecular , Genoma de Inseto , Pigmentação/genética , Adaptação Biológica/genética , Distribuição Animal , Animais , Sequência de Bases , Teorema de Bayes , Sequência Conservada , Especiação Genética , Genótipo , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Funções Verossimilhança , Modelos Genéticos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Panamá , Fenótipo , Filogenia , Análise de Sequência de DNA , América do Sul , Sintenia , Transcriptoma , Asas de Animais/fisiologia
12.
BMC Evol Biol ; 15: 204, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26403600

RESUMO

BACKGROUND: A key to understanding the origins of species is determining the evolutionary processes that drive the patterns of genomic divergence during speciation. New genomic technologies enable the study of high-resolution genomic patterns of divergence across natural speciation continua, where taxa pairs with different levels of reproductive isolation can be used as proxies for different stages of speciation. Empirical studies of these speciation continua can provide valuable insights into how genomes diverge during speciation. METHODS: We examine variation across a handful of genomic regions in parapatric and allopatric populations of Heliconius butterflies with varying levels of reproductive isolation. Genome sequences were mapped to 2.2-Mb of the H. erato genome, including 1-Mb across the red color pattern locus and multiple regions unlinked to color pattern variation. RESULTS: Phylogenetic analyses reveal a speciation continuum of pairs of hybridizing races and incipient species in the Heliconius erato clade. Comparisons of hybridizing pairs of divergently colored races and incipient species reveal that genomic divergence increases with ecological and reproductive isolation, not only across the locus responsible for adaptive variation in red wing coloration, but also at genomic regions unlinked to color pattern. DISCUSSION: We observe high levels of divergence between the incipient species H. erato and H. himera, suggesting that divergence may accumulate early in the speciation process. Comparisons of genomic divergence between the incipient species and allopatric races suggest that limited gene flow cannot account for the observed high levels of divergence between the incipient species. CONCLUSIONS: Our results provide a reconstruction of the speciation continuum across the H. erato clade and provide insights into the processes that drive genomic divergence during speciation, establishing the H. erato clade as a powerful framework for the study of speciation.


Assuntos
Borboletas/anatomia & histologia , Borboletas/genética , Fluxo Gênico , Genes de Insetos , Pigmentação , Asas de Animais/anatomia & histologia , Animais , Evolução Biológica , Borboletas/classificação , Especiação Genética , Hibridização Genética , Filogenia
13.
Biol Lett ; 11(3)2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25762572

RESUMO

Investigating how species coped with past environmental changes informs how modern species might face human-induced global changes, notably via the study of historical extinction, a dominant feature that has shaped current biodiversity patterns. The genus Bombus, which comprises 250 mostly cold-adapted species, is an iconic insect group sensitive to current global changes. Through a combination of habitat loss, pathogens and climate change, bumblebees have experienced major population declines, and several species are threatened with extinction. Using a time-calibrated tree of Bombus, we analyse their diversification dynamics and test hypotheses about the role of extinction during major environmental changes in their evolutionary history. These analyses support a history of fluctuating species dynamics with two periods of historical species loss in bumblebees. Dating estimates gauge that one of these events started after the middle Miocene climatic optimum and one during the early Pliocene. Both periods are coincident with global climate change that may have extirpated Bombus species. Interestingly, bumblebees experienced high diversification rates during the Plio-Pleistocene glaciations. We also found evidence for a major species loss in the past one million years that may be continuing today.


Assuntos
Abelhas/classificação , Evolução Biológica , Mudança Climática , Extinção Biológica , Animais , Abelhas/genética , Biodiversidade , Ecossistema , Especiação Genética , Filogenia
14.
Proc Natl Acad Sci U S A ; 108(49): 19666-71, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22084094

RESUMO

The mimetic butterflies Heliconius erato and Heliconius melpomene have undergone parallel radiations to form a near-identical patchwork of over 20 different wing-pattern races across the Neotropics. Previous molecular phylogenetic work on these radiations has suggested that similar but geographically disjunct color patterns arose multiple times independently in each species. The neutral markers used in these studies, however, can move freely across color pattern boundaries, and therefore might not represent the history of the adaptive traits as accurately as markers linked to color pattern genes. To assess the evolutionary histories across different loci, we compared relationships among races within H. erato and within H. melpomene using a series of unlinked genes, genes linked to color pattern loci, and optix, a gene recently shown to control red color-pattern variation. We found that although unlinked genes partition populations by geographic region, optix had a different history, structuring lineages by red color patterns and supporting a single origin of red-rayed patterns within each species. Genes closely linked (80-250 kb) to optix exhibited only weak associations with color pattern. This study empirically demonstrates the necessity of examining phenotype-determining genomic regions to understand the history of adaptive change in rapidly radiating lineages. With these refined relationships, we resolve a long-standing debate about the origins of the races within each species, supporting the hypothesis that the red-rayed Amazonian pattern evolved recently and expanded, causing disjunctions of more ancestral patterns.


Assuntos
Borboletas/genética , Variação Genética , Filogenia , Asas de Animais/metabolismo , Animais , Borboletas/classificação , Região do Caribe , Núcleo Celular/genética , Análise por Conglomerados , DNA Mitocondrial/química , DNA Mitocondrial/genética , Genes de Insetos/genética , Geografia , Haplótipos , Dados de Sequência Molecular , Fenótipo , Pigmentação/genética , Análise de Sequência de DNA , América do Sul , Especificidade da Espécie
15.
PLoS One ; 19(5): e0303383, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38805521

RESUMO

One of the most challenging aspects of bee ecology and conservation is species-level identification, which is costly, time consuming, and requires taxonomic expertise. Recent advances in the application of deep learning and computer vision have shown promise for identifying large bumble bee (Bombus) species. However, most bees, such as sweat bees in the genus Lasioglossum, are much smaller and can be difficult, even for trained taxonomists, to identify. For this reason, the great majority of bees are poorly represented in the crowdsourced image datasets often used to train computer vision models. But even larger bees, such as bumble bees from the B. vagans complex, can be difficult to separate morphologically. Using images of specimens from our research collections, we assessed how deep learning classification models perform on these more challenging taxa, qualitatively comparing models trained on images of whole pinned specimens or on images of bee forewings. The pinned specimen and wing image datasets represent 20 and 18 species from 6 and 4 genera, respectively, and were used to train the EfficientNetV2L convolutional neural network. Mean test precision was 94.9% and 98.1% for pinned and wing images respectively. Results show that computer vision holds great promise for classifying smaller, more difficult to identify bees that are poorly represented in crowdsourced datasets. Images from research and museum collections will be valuable for expanding classification models to include additional species, which will be essential for large scale conservation monitoring efforts.


Assuntos
Aprendizado Profundo , Asas de Animais , Abelhas/anatomia & histologia , Abelhas/classificação , Animais , Asas de Animais/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Especificidade da Espécie
16.
Sci Adv ; 10(24): eadl2286, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38865449

RESUMO

Müllerian mimicry was proposed to be an example of a coevolved mutualism promoted by population isolation in glacial refugia. This, however, has not been well supported in butterfly models. Here, we use genomic data to test this theory while examining the population genetics behind mimetic diversification in a pair of co-mimetic bumble bees, Bombus breviceps Smith and Bombus trifasciatus Smith. In both lineages, populations were structured by geography but not as much by color pattern, suggesting sharing of color alleles across regions of restricted gene flow and formation of mimicry complexes in the absence of genetic differentiation. Demographic analyses showed mismatches between historical effective population size changes and glacial cycles, and niche modeling revealed only mild habitat retraction during glaciation. Moreover, mimetic subpopulations of the same color form in the two lineages only in some cases exhibit similar population history and genetic divergence. Therefore, the current study supports a more complex history in this comimicry than a simple refugium-coevolution model.


Assuntos
Mimetismo Biológico , Animais , Abelhas/genética , Abelhas/fisiologia , Mimetismo Biológico/genética , Refúgio de Vida Selvagem , Evolução Biológica , Fluxo Gênico , Genética Populacional , Filogenia , Ecossistema , Coevolução Biológica , Variação Genética
17.
PLoS Genet ; 6(2): e1000796, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20140239

RESUMO

Wing pattern evolution in Heliconius butterflies provides some of the most striking examples of adaptation by natural selection. The genes controlling pattern variation are classic examples of Mendelian loci of large effect, where allelic variation causes large and discrete phenotypic changes and is responsible for both convergent and highly divergent wing pattern evolution across the genus. We characterize nucleotide variation, genotype-by-phenotype associations, linkage disequilibrium (LD), and candidate gene expression patterns across two unlinked genomic intervals that control yellow and red wing pattern variation among mimetic forms of Heliconius erato. Despite very strong natural selection on color pattern, we see neither a strong reduction in genetic diversity nor evidence for extended LD across either patterning interval. This observation highlights the extent that recombination can erase the signature of selection in natural populations and is consistent with the hypothesis that either the adaptive radiation or the alleles controlling it are quite old. However, across both patterning intervals we identified SNPs clustered in several coding regions that were strongly associated with color pattern phenotype. Interestingly, coding regions with associated SNPs were widely separated, suggesting that color pattern alleles may be composed of multiple functional sites, conforming to previous descriptions of these loci as "supergenes." Examination of gene expression levels of genes flanking these regions in both H. erato and its co-mimic, H. melpomene, implicate a gene with high sequence similarity to a kinesin as playing a key role in modulating pattern and provides convincing evidence for parallel changes in gene regulation across co-mimetic lineages. The complex genetic architecture at these color pattern loci stands in marked contrast to the single casual mutations often identified in genetic studies of adaptation, but may be more indicative of the type of genetic changes responsible for much of the adaptive variation found in natural populations.


Assuntos
Adaptação Fisiológica/genética , Borboletas/genética , Genética Populacional , Genoma/genética , Animais , Cromossomos Artificiais Bacterianos/genética , Regulação da Expressão Gênica , Loci Gênicos/genética , Variação Genética , Genótipo , Hibridização Genética , Desequilíbrio de Ligação/genética , Fases de Leitura Aberta/genética , Peru , Fenótipo , Mapeamento Físico do Cromossomo , Pigmentação/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA
18.
Animals (Basel) ; 13(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37238086

RESUMO

Vairimorpha, a microsporidian parasite (previously classified as Nosema), has been implicated in the decline of wild bumble bee species in North America. Previous studies examining its influence on colony performance have displayed variable results, from extremely detrimental effects to no observable influence, and little is known about the effects it has on individuals during the winter diapause, a bottleneck for survival in many annual pollinators. Here, we examined the effect of Vairimorpha infection, body size, and mass on diapause survival in Bombus griseocollis gynes. We demonstrate that gyne survival length in diapause is negatively affected by symptomatic Vairimorpha infection of the maternal colony but does not correlate with individual pathogen load. Our findings further indicate that increased body mass offers a protective effect against mortality during diapause in infected, but not in healthy, gynes. This suggests that access to adequate nutritional resources prior to diapause might offset the harmful effect of Vairimorpha infection.

19.
Environ Entomol ; 52(3): 491-501, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37133965

RESUMO

Bumble bees (Hymenoptera: Apidae, Bombus Latreille) perform important ecological services in both managed and natural ecosystems. Anthropogenically induced change has altered floral resources, climate, and insecticide exposure, factors that impact health and disease levels in these bees. Habitat management presents a solution for improving bee health and biodiversity, but this requires better understanding of how different pathogens and bee species respond to habitat conditions. We take advantage of the washboard of repeated ridges (forested) and valleys (mostly developed) in central Pennsylvania to examine whether local variation in habitat type and other landscape factors influence bumble bee community composition and levels of 4 leading pathogens in the common eastern bumble bee, Bombus impatiens Cresson. Loads of viruses (DWV and BQCV) were found to be lowest in forest habitats, whereas loads of a gut parasite, Crithidia bombi, were highest in forests. Ridgetop forests hosted the most diverse bumble bee communities, including several habitat specialists. B. impatiens was most abundant in valleys, and showed higher incidence in areas of greater disturbance, including more developed, unforested, and lower floral resource sites, a pattern which mirrors its success in the face of anthropogenic change. Additionally, DNA barcoding revealed that B. sandersoni is much more common than is apparent from databases. Our results provide evidence that habitat type can play a large role in pathogen load dynamics, but in ways that differ by pathogen type, and point to a need for consideration of habitat at both macro-ecological and local spatial scales.


Assuntos
Himenópteros , Mariposas , Abelhas , Animais , Ecossistema , Florestas , Biodiversidade
20.
Ecol Evol ; 13(11): e10730, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034342

RESUMO

Globally, insects have been impacted by climate change, with bumble bees in particular showing range shifts and declining species diversity with global warming. This suggests heat tolerance is a likely factor limiting the distribution and success of these bees. Studies have shown high intraspecific variance in bumble bee thermal tolerance, suggesting biological and environmental factors may be impacting heat resilience. Understanding these factors is important for assessing vulnerability and finding environmental solutions to mitigate effects of climate change. In this study, we assess whether geographic range variation in bumble bees in the eastern United States is associated with heat tolerance and further dissect which other biological and environmental factors explain variation in heat sensitivity in these bees. We examine heat tolerance by caste, sex, and rearing condition (wild/lab) across six eastern US bumble bee species, and assess the role of age, reproductive status, body size, and interactive effects of humidity and temperature on thermal tolerance in Bombus impatiens. We found marked differences in heat tolerance by species that correlate with each species' latitudinal range, habitat, and climatic niche, and we found significant variation in thermal sensitivity by caste and sex. Queens had considerably lower heat tolerance than workers and males, with greater tolerance when queens would first be leaving their natal nest, and lower tolerance after ovary activation. Wild bees tended to have higher heat tolerance than lab reared bees, and body size was associated with heat tolerance only in wild-caught foragers. Humidity showed a strong interaction with heat effects, pointing to the need to regulate relative humidity in thermal assays and consider its role in nature. Altogether, we found most tested biological conditions impact thermal tolerance and highlight the stages of these bees that will be most sensitive to future climate change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA