Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Struct Funct ; 48(2): 187-198, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37704453

RESUMO

Small extracellular vesicles (sEVs) are largely classified into two types, plasma-membrane derived sEVs and endomembrane-derived sEVs. The latter type (referred to as exosomes herein) is originated from late endosomes or multivesicular bodies (MVBs). In order to release exosomes extracellularly, MVBs must fuse with the plasma membrane, not with lysosomes. In contrast to the mechanism responsible for MVB-lysosome fusion, the mechanism underlying the MVB-plasma membrane fusion is poorly understood. Here, we systematically analyze soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family proteins and identify VAMP5 as an MVB-localized SNARE protein required for exosome release. Depletion of VAMP5 in HeLa cells impairs exosome release. Mechanistically, VAMP5 mediates exosome release by interacting with SNAP47 and plasma membrane SNARE Syntaxin 1 (STX1) or STX4 to release exosomes. VAMP5 is also found to mediate asymmetric exosome release from polarized Madin-Darby canine kidney (MDCK) epithelial cells through interaction with the distinct sets of Q-SNAREs, suggesting that VAMP5 is a general exosome regulator in both polarized cells and non-polarized cells.Key words: exosome, small extracellular vesicle (sEV), multivesicular body, SNARE, VAMP5.


Assuntos
Exossomos , Humanos , Animais , Cães , Exossomos/metabolismo , Células HeLa , Membrana Celular/metabolismo , Proteínas SNARE/metabolismo , Proteínas Qa-SNARE/metabolismo
2.
J Cell Sci ; 134(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34817057

RESUMO

Two small GTPases, Rab1 and Rab5, are key membrane trafficking regulators that are conserved in all eukaryotes. They have recently been found to be essential for cell survival and/or growth in cultured mammalian cells, thereby precluding the establishment of Rab1-knockout (KO) and Rab5-KO cells, making it extremely difficult to assess the impact of complete Rab1 or Rab5 protein depletion on cellular functions. Here, we generated and analyzed cell lines with conditional KO (CKO) of either Rab1 (Rab1A and Rab1B) or Rab5 (Rab5A, Rab5B and Rab5C) by using the auxin-inducible protein degradation system. Rab1 CKO and Rab5 CKO led to eventual cell death from 18 h and 48 h, respectively, after auxin exposure. After acute Rab1 protein depletion, the Golgi stack and ribbon structures were completely disrupted, and endoplasmic reticulum (ER)-to-Golgi trafficking was severely inhibited. Moreover, we discovered a novel Rab1-depletion phenotype: perinuclear clustering of early endosomes and delayed transferrin recycling. In contrast, acute Rab5 protein depletion resulted in loss of early endosomes and late endosomes, but lysosomes appeared to be normal. We also observed a dramatic reduction in the intracellular signals of endocytic cargos via receptor-mediated or fluid-phase endocytosis in Rab5-depleted cells.


Assuntos
Endocitose , Ácidos Indolacéticos , Animais , Endocitose/genética , Endossomos/genética , Endossomos/metabolismo , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab1 de Ligação ao GTP/genética , Proteínas rab1 de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
3.
J Cell Sci ; 134(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33712449

RESUMO

The small GTPase Rab11 (herein referring to the Rab11A and Rab11B isoforms) plays pivotal roles in diverse physiological phenomena, including the recycling of membrane proteins, cytokinesis, neurite outgrowth and epithelial morphogenesis. One effective method of analyzing the function of endogenous Rab11 is to overexpress a Rab11-binding domain from one of its effectors, for example, the C-terminal domain of Rab11-FIP2 (Rab11-FIP2-C), as a dominant-negative construct. However, the drawback of this method is the broader Rab-binding specificity of the effector domain, because Rab11-FIP2-C binds to Rabs other than Rab11, for example, to Rab14 and Rab25. In this study, we bioengineered an artificial Rab11-specific binding domain, named RBD11. Expression of RBD11 allowed visualization of endogenous Rab11 without affecting its localization or function, whereas expression of a tandem RBD11, named 2×RBD11, inhibited epithelial morphogenesis and induced a multi-lumen phenotype characteristic of Rab11-deficient cysts. We also developed two tools for temporally and reversibly analyzing Rab11-dependent membrane trafficking - tetracycline-inducible 2×RBD11 and an artificially oligomerized domain (FM)-tagged RBD11.


Assuntos
Proteínas de Membrana , Proteínas rab de Ligação ao GTP , Proteínas de Membrana/metabolismo , Ligação Proteica , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
4.
EMBO Rep ; 22(5): e51475, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33724661

RESUMO

Exosomes, important players in cell-cell communication, are small extracellular vesicles of endocytic origin. Although single cells are known to release various kinds of exosomes (referred to as exosomal heterogeneity), very little is known about the mechanisms by which they are produced and released. Here, we established methods of studying exosomal heterogeneity by using polarized epithelial cells and showed that distinct types of small extracellular vesicles (more specifically CD9- and CD63-positive, Annexin I-negative small extracellular vesicles, which we refer to as exosomes herein) are differentially secreted from the apical and basolateral sides of polarized epithelial cells. We also identify GPRC5C (G protein-coupled receptor class C group 5 member C) as an apical exosome-specific protein. We further demonstrate that basolateral exosome release depends on ceramide, whereas ALIX, an ESCRT (endosomal sorting complexes required for transport)-related protein, not the ESCRT machinery itself, is required for apical exosome release. Thus, two independent machineries, the ALIX-Syntenin1-Syndecan1 machinery (apical side) and the sphingomyelinase-dependent ceramide production machinery (basolateral side), are likely to be responsible for the polarized exosome release from epithelial cells.


Assuntos
Exossomos , Vesículas Extracelulares , Ceramidas , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Células Epiteliais
5.
J Cell Biol ; 221(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36197338

RESUMO

Rab5 and Rab7 are known to regulate endosome maturation, and a Rab5-to-Rab7 conversion mediated by a Rab7 activator, Mon1-Ccz1, is essential for progression of the maturation process. However, the importance and mechanism of Rab5 inactivation during endosome maturation are poorly understood. Here, we report a novel Rab5-GAP, TBC1D18, which is associated with Mon1 and mediates endosome maturation. We found that increased active Rab5 (Rab5 hyperactivation) in addition to reduced active Rab7 (Rab7 inactivation) occurs in the absence of Mon1. We present evidence showing that the severe defects in endosome maturation in Mon1-KO cells are attributable to Rab5 hyperactivation rather than to Rab7 inactivation. We then identified TBC1D18 as a Rab5-GAP by comprehensive screening of TBC-domain-containing Rab-GAPs. Expression of TBC1D18 in Mon1-KO cells rescued the defects in endosome maturation, whereas its depletion attenuated endosome formation and degradation of endocytosed cargos. Moreover, TBC1D18 was found to be associated with Mon1, and it localized in close proximity to lysosomes in a Mon1-dependent manner.


Assuntos
Endossomos , Proteínas Ativadoras de GTPase , Proteínas rab de Ligação ao GTP , Endossomos/genética , Endossomos/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7/genética , proteínas de unión al GTP Rab7/metabolismo
6.
FEBS J ; 288(1): 36-55, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32542850

RESUMO

The Rab family of small GTPases regulates intracellular membrane trafficking by orchestrating the biogenesis, transport, tethering, and fusion of membrane-bound organelles and vesicles. Like other small GTPases, Rabs cycle between two states, an active (GTP-loaded) state and an inactive (GDP-loaded) state, and their cycling is catalyzed by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Because an active form of each Rab localizes on a specific organelle (or vesicle) and recruits various effector proteins to facilitate each step of membrane trafficking, knowing when and where Rabs are activated and what effectors Rabs recruit is crucial to understand their functions. Since the discovery of Rabs, they have been regarded as one of the central hubs for membrane trafficking, and numerous biochemical and genetic studies have revealed the mechanisms of Rab functions in recent years. The results of these studies have included the identification and characterization of novel GEFs, GAPs, and effectors, as well as post-translational modifications, for example, phosphorylation, of Rabs. Rab functions beyond the simple effector-recruiting model are also emerging. Furthermore, the recently developed CRISPR/Cas technology has enabled acceleration of knockout analyses in both animals and cultured cells and revealed previously unknown physiological roles of many Rabs. In this review article, we provide the most up-to-date and comprehensive lists of GEFs, GAPs, effectors, and knockout phenotypes of mammalian Rabs and discuss recent findings in regard to their regulation and functions.


Assuntos
Proteínas Ativadoras de GTPase/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Organelas/metabolismo , Processamento de Proteína Pós-Traducional , Vesículas Transportadoras/metabolismo , Proteínas rab de Ligação ao GTP/genética , Animais , Transporte Biológico , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , Proteínas Ativadoras de GTPase/classificação , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/classificação , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Organelas/química , Fosforilação , Filogenia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Terminologia como Assunto , Vesículas Transportadoras/química , Proteínas rab de Ligação ao GTP/classificação , Proteínas rab de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA