RESUMO
Retrotransposon Gag-like 5 [RTL5, also known as sushi-ichi-related retrotransposon homolog 8 (SIRH8)] and RTL6 (also known as SIRH3) are eutherian-specific genes presumably derived from a retrovirus and phylogenetically related to each other. They, respectively, encode a strongly acidic and extremely basic protein, and are well conserved among the eutherians. Here, we report that RTL5 and RTL6 are microglial genes with roles in the front line of innate brain immune response. Venus and mCherry knock-in mice exhibited expression of RTL5-mCherry and RTL6-Venus fusion proteins in microglia and appeared as extracellular dots and granules in the central nervous system. These proteins display a rapid response to pathogens such as lipopolysaccharide (LPS), double-stranded (ds) RNA analog and non-methylated CpG DNA, acting both cooperatively and/or independently. Experiments using Rtl6 or Rtl5 knockout mice provided additional evidence that RTL6 and RTL5 act as factors against LPS and dsRNA, respectively, in the brain, providing the first demonstration that retrovirus-derived genes play a role in the eutherian innate immune system. Finally, we propose a model emphasizing the importance of extra-embryonic tissues as the origin site of retrovirus-derived genes. This article has an associated 'The people behind the papers' interview.
Assuntos
Lipopolissacarídeos , Retroviridae , Animais , Encéfalo/metabolismo , Eutérios/genética , Humanos , Sistema Imunitário , Imunidade Inata/genética , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Knockout , Microglia/metabolismo , RNA de Cadeia Dupla/metabolismo , Retroelementos/genética , Retroviridae/genéticaRESUMO
AIMS/HYPOTHESIS: Glucagon-expressing pancreatic alpha cells have attracted much attention for their plasticity to transdifferentiate into insulin-producing beta cells; however, it remains unclear precisely when, and from where, alpha cells emerge and what regulates alpha cell fate. We therefore explored the spatial and transcriptional heterogeneity of alpha cell differentiation using a novel time-resolved reporter system. METHODS: We established the mouse model, 'Gcg-Timer', in which newly generated alpha cells can be distinguished from more-differentiated cells by their fluorescence. Fluorescence imaging and transcriptome analysis were performed with Gcg-Timer mice during the embryonic and postnatal stages. RESULTS: Fluorescence imaging and flow cytometry demonstrated that green fluorescence-dominant cells were present in Gcg-Timer mice at the embryonic and neonatal stages but not after 1 week of age, suggesting that alpha cell neogenesis occurs during embryogenesis and early neonatal stages under physiological conditions. Transcriptome analysis of Gcg-Timer embryos revealed that the mRNAs related to angiogenesis were enriched in newly generated alpha cells. Histological analysis revealed that some alpha cells arise close to the pancreatic ducts, whereas the others arise away from the ducts and adjacent to the blood vessels. Notably, when the glucagon signal was suppressed by genetic ablation or by chemicals, such as neutralising glucagon antibody, green-dominant cells emerged again in adult mice. CONCLUSIONS/INTERPRETATION: Novel time-resolved analysis with Gcg-Timer reporter mice uncovered spatiotemporal features of alpha cell neogenesis that will enhance our understanding of cellular identity and plasticity within the islets. DATA AVAILABILITY: Raw and processed RNA sequencing data for this study has been deposited in the Gene Expression Omnibus under accession number GSE229090.
Assuntos
Células Secretoras de Glucagon , Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Animais , Glucagon/metabolismo , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Insulina/metabolismo , Diferenciação Celular/genética , Perfilação da Expressão Gênica , Ilhotas Pancreáticas/metabolismoRESUMO
Oligodendrocyte (OL) differentiation from oligodendrocyte precursor cells (OPCs) is considered to result in two populations: premyelinating and myelinating OLs. Recent single-cell RNA sequence data subdivided these populations into newly formed (NFOLs), myelin-forming (MFOLs), and mature (MOLs) oligodendrocytes. However, which newly proposed population corresponds to premyelinating or myelinating OLs is unknown. We focused on the NFOL-specific long non-coding oligodendrocyte 1 gene (LncOL1) and sought to label NFOLs under the control of the LncOL1 promoter using a tetracycline-controllable gene induction system. We demonstrated that LncOL1 was expressed by premyelinating OLs and that the MFOL-specific gene, Ctps, was not, indicating that NFOLs correspond to premyelinating OLs and that MFOLs and MOLs correspond to myelinating OLs. We then generated a LncOL1-tTA mouse in which a tetracycline transactivator (tTA) cassette was inserted downstream from the LncOL1 transcription initiation site. By crossing the LncOL1-tTA mice with tetO reporter mice, we generated LncOL1-tTA::tetO-yellow fluorescent protein (YFP) double-transgenic (LncOL1-YFP) mice. Although LncOL1 is non-coding, YFP was detected in LncOL1-YFP mice, indicating successful tTA translation. Unexpectedly, we found that the morphology of LncOL1-tTA-driven YFP+ cells was distinct from that of LncOL1+ premyelinating OLs and that the labeled cells instead appeared as myelinating OLs. We demonstrated from their RNA expression that YFP-labeled OLs were MFOLs, but not MOLs. Using the unique property of delayed YFP induction, we sought to determine whether MFOLs are constantly supplied from OPCs and differentiate into MOLs, or whether MFOLs pause their differentiation and sustain this stage in the adult brain. To achieve this objective, we irradiated adult LncOL1-YFP brains with X-rays to deplete dividing OPCs and their progeny. The irradiation extinguished YFP-labeled OLs, indicating that adult OPCs differentiated into MOLs during a single period. We established a new transgenic mouse line that genetically labels MFOLs, providing a reliable tool for investigating the dynamics of adult oligodendrogenesis.
RESUMO
The most frequent genetic cause of focal epilepsies is variations in the GAP activity toward RAGs 1 complex genes DEP domain containing 5 (DEPDC5), nitrogen permease regulator 2-like protein (NPRL2) and nitrogen permease regulator 3-like protein (NPRL3). Because these variations are frequent and associated with a broad spectrum of focal epilepsies, a unique pathology categorized as GATORopathy can be conceptualized. Animal models recapitulating the clinical features of patients are essential to decipher GATORopathy. Although several genetically modified animal models recapitulate DEPDC5-related epilepsy, no models have been reported for NPRL2- or NPRL3-related epilepsies. Here, we conditionally deleted Nprl2 and Nprl3 from the dorsal telencephalon in mice [Emx1cre/+; Nprl2f/f (Nprl2-cKO) and Emx1cre/+; Nprl3f/f (Nprl3-cKO)] and compared their phenotypes with Nprl2+/-, Nprl3+/- and Emx1cre/+; Depdc5f/f (Depdc5-cKO) mice. Nprl2-cKO and Nprl3-cKO mice recapitulated the major abnormal features of patients-spontaneous seizures, and dysmorphic enlarged neuronal cells with increased mechanistic target of rapamycin complex 1 signaling-similar to Depdc5-cKO mice. Chronic postnatal rapamycin administration dramatically prolonged the survival period and inhibited seizure occurrence but not enlarged neuronal cells in Nprl2-cKO and Nprl3-cKO mice. However, the benefit of rapamycin after withdrawal was less durable in Nprl2- and Nprl3-cKO mice compared with Depdc5-cKO mice. Further studies using these conditional knockout mice will be useful for understanding GATORopathy and for the identification of novel therapeutic targets.
Assuntos
Epilepsias Parciais , Epilepsia , Animais , Modelos Animais de Doenças , Epilepsias Parciais/genética , Epilepsia/genética , Proteínas Ativadoras de GTPase/genética , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Knockout , Mutação , Nitrogênio/metabolismo , Convulsões , Sirolimo , Telencéfalo/metabolismo , Proteínas Supressoras de Tumor/genéticaRESUMO
Actions from glial cells could affect the readiness and efficacy of learning and memory. Using a mouse cerebellar-dependent horizontal optokinetic response motor learning paradigm, short-term memory (STM) formation during the online training period and long-term memory (LTM) formation during the offline rest period were studied. A large variability of online and offline learning efficacies was found. The early bloomers with booming STM often had a suppressed LTM formation and late bloomers with no apparent acute training effect often exhibited boosted offline learning performance. Anion channels containing LRRC8A are known to release glutamate. Conditional knockout of LRRC8A specifically in astrocytes including cerebellar Bergmann glia resulted in a complete loss of STM formation while the LTM formation during the rest period remained. Optogenetic manipulation of glial activity by channelrhodopsin-2 or archaerhodopsin-T (ArchT) during the online training resulted in enhancement or suppression of STM formation, respectively. STM and LTM are likely to be triggered simultaneously during online training, but LTM is expressed later during the offline period. STM appears to be volatile and the achievement during the online training is not handed over to LTM. In addition, we found that glial ArchT photoactivation during the rest period resulted in the augmentation of LTM formation. These data suggest that STM formation and LTM formation are parallel separate processes. Strategies to weigh more on the STM or the LTM could depend on the actions of the glial cells.
Assuntos
Aprendizagem , Memória de Curto Prazo , Memória de Curto Prazo/fisiologia , Aprendizagem/fisiologia , Memória de Longo Prazo , NeurogliaRESUMO
Retrotransposon Gag-like (RTL) genes play a variety of essential and important roles in the eutherian placenta and brain. It has recently been demonstrated that RTL5 and RTL6 (also known as sushi-ichi retrotransposon homolog 8 (SIRH8) and SIRH3) are microglial genes that play important roles in the brain's innate immunity against viruses and bacteria through their removal of double-stranded RNA and lipopolysaccharide, respectively. In this work, we addressed the function of RTL9 (also known as SIRH10). Using knock-in mice that produce RTL9-mCherry fusion protein, we examined RTL9 expression in the brain and its reaction to fungal zymosan. Here, we demonstrate that RTL9 plays an important role, degrading zymosan in the brain. The RTL9 protein is localized in the microglial lysosomes where incorporated zymosan is digested. Furthermore, in Rtl9 knockout mice expressing RTL9ΔC protein lacking the C-terminus retroviral GAG-like region, the zymosan degrading activity was lost. Thus, RTL9 is essentially engaged in this reaction, presumably via its GAG-like region. Together with our previous study, this result highlights the importance of three retrovirus-derived microglial RTL genes as eutherian-specific constituents of the current brain innate immune system: RTL9, RTL5 and RTL6, responding to fungi, viruses and bacteria, respectively.
Assuntos
Antifúngicos , Eutérios , Gravidez , Feminino , Camundongos , Animais , Zimosan , Eutérios/genética , Retroviridae/genética , Retroelementos/genética , Imunidade Inata , Encéfalo , Camundongos KnockoutRESUMO
Seizures invite seizures. At the initial stage of epilepsy, seizures intensify with each episode; however, the mechanisms underlying this exacerbation remain to be solved. Astrocytes have a strong control over neuronal excitability and the mode of information processing. This control is accomplished by adjusting the levels of various ions in the extracellular space. The network of astrocytes connected via gap junctions allows a wider or more confined distribution of these ions depending on the open probability of the gap junctions. K+ clearance relies on the K+ uptake by astrocytes and the subsequent diffusion of K+ through the astrocyte network. When astrocytes become uncoupled, K+ clearance becomes hindered. Accumulation of extracellular K+ leads to hyperexcitability of neurons. Here, using acute hippocampal slices from mice, we uncovered that brief periods of epileptiform activity result in gap junction uncoupling. In slices that experienced short-term epileptiform activity, extracellular K+ transients in response to glutamate became prolonged. Na+ imaging with a fluorescent indicator indicated that intercellular diffusion of small cations in the astrocytic syncytium via gap junctions became rapidly restricted after epileptiform activity. Using a transgenic mouse with astrocyte-specific expression of a pH sensor (Lck-E2GFP), we confirmed that astrocytes react to epileptiform activity with intracellular alkalization. Application of Na+/HCO3- cotransporter blocker led to the suppression of intracellular alkalization of astrocytes and to the prevention of astrocyte uncoupling and hyperactivity intensification both in vitro and in vivo Therefore, the inhibition of astrocyte alkalization could become a promising therapeutic strategy for countering epilepsy development.SIGNIFICANCE STATEMENT We aimed to understand the mechanisms underlying the plastic change of forebrain circuits associated with the intensification of epilepsy. Here, we demonstrate that first-time exposure to only brief periods of epileptiform activity results in acute disturbance of the intercellular astrocyte network formed by gap junctions in hippocampal tissue slices from mice. Moreover, rapid clearance of K+ from the extracellular space was impaired. Epileptiform activity activated inward Na+/HCO3- cotransport in astrocytes by cell depolarization, resulting in their alkalization. Our data suggest that alkaline pH shifts in astrocytes lead to gap junction uncoupling, hampering K+ clearance, and thereby to exacerbation of epilepsy. Pharmacological intervention could become a promising new strategy to dampen neuronal hyperexcitability and epileptogenesis.
Assuntos
Astrócitos/metabolismo , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Junções Comunicantes/metabolismo , Animais , Hipocampo , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Potássio/metabolismoRESUMO
Expression of mucin MUC2, a component of the colonic mucus layer, plays a crucial role in intestinal homeostasis. Here, we describe a new regulator of MUC2 expression, the deubiquitinase ZRANB1 (Trabid). A ZRANB1 mutation changing cysteine to serine in amino acid position 443, affects ubiquitination. To analyze ZRANB1 function in the intestine, we generated Zranb1 C443S mutant knock-in (Zranb1C443S/C443S) mice using the CRISPR/Cas9 system. Zranb1C443S/C443S mice exhibited decreased mRNA expression and MUC2 production. Colonic organoids from Zranb1C443S/C443S mice displayed decreased Muc2 mRNA expression following differentiation into goblet cells. Finally, we analyzed dextran sulfate sodium-induced colitis to understand ZRANB1's role in intestinal inflammation. Zranb1C443S/C443S mice with colitis exhibited significant weight loss, reduced colon length, and worsening clinical and pathological scores, indicating that ZRANB1 contributes to intestinal homeostasis. Together, these results suggest that ZRANB1 regulates MUC2 expression and intestinal inflammation, which may help elucidating the pathogenesis of inflammatory bowel disease and developing new therapeutics targeting ZRANB1.
Assuntos
Colite , Mucosa Intestinal , Proteases Específicas de Ubiquitina , Animais , Colite/induzido quimicamente , Colite/genética , Colite/metabolismo , Cisteína/metabolismo , Enzimas Desubiquitinantes/metabolismo , Sulfato de Dextrana/toxicidade , Inflamação/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Mucinas/metabolismo , Muco/metabolismo , RNA Mensageiro/genética , Serina/metabolismo , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismoRESUMO
c-Jun N-terminal kinases (JNKs) are constitutively activated in mammalian brains and are indispensable for their development and neural functions. MKK7 is an upstream activator of all JNKs. However, whether the common JNK signaling pathway regulates the brain's control of social behavior remains unclear. Here, we show that female mice in which Mkk7 is deleted specifically in mature neurons (Mkk7flox/flox Syn-Cre mice) give birth to a normal number of pups but fail to raise them due to a defect in pup retrieval. To explore the mechanism underlying this abnormality, we performed comprehensive behavioral tests. Mkk7flox/flox Syn-Cre mice showed normal locomotor functions and cognitive ability but exhibited depression-like behavior. cDNA microarray analysis of mutant brain revealed an altered gene expression pattern. Quantitative RT-PCR analysis demonstrated that mRNA expression levels of genes related to neural signaling pathways and a calcium channel were significantly different from controls. In addition, loss of neural MKK7 had unexpected regulatory effects on gene expression patterns in oligodendrocytes. These findings indicate that MKK7 has an important role in regulating the gene expression patterns responsible for promoting normal social behavior and staving off depression.
Assuntos
MAP Quinase Quinase 7/metabolismo , Comportamento Materno , Neurônios/metabolismo , Animais , Comportamento Animal , Feminino , MAP Quinase Quinase 7/deficiência , MAP Quinase Quinase 7/genética , Camundongos , Camundongos Endogâmicos C57BL , Oligodendroglia/metabolismoRESUMO
RASSF6 is a member of the tumor suppressor Ras association domain family (RASSF) proteins. We have reported using human cancer cell lines that RASSF6 induces apoptosis and cell cycle arrest via p53 and plays tumor suppressive roles. In this study, we generated Rassf6 knockout mice by CRISPR/Cas technology. Contrary to our expectation, Rassf6 knockout mice were apparently healthy. However, Rassf6-null mouse embryonic fibroblasts (MEF) were resistant against ultraviolet (UV)-induced apoptosis/cell cycle arrest and senescence. UV-induced p53-target gene expression was compromised, and DNA repair was delayed in Rassf6-null MEF. More importantly, KRAS active mutant promoted the colony formation of Rassf6-null MEF but not the wild-type MEF. RNA sequencing analysis showed that NF-κB signaling was enhanced in Rassf6-null MEF. Consistently, 7,12-dimethylbenz(a)anthracene (DMBA) induced skin inflammation in Rassf6 knockout mice more remarkably than in the wild-type mice. Hence, Rassf6 deficiency not only compromises p53 function but also enhances NF-κB signaling to lead to oncogenesis.
Assuntos
Proteínas Monoméricas de Ligação ao GTP , NF-kappa B , Animais , Apoptose , Proteínas Reguladoras de Apoptose , Fibroblastos/metabolismo , Camundongos , Camundongos Knockout , Proteínas Monoméricas de Ligação ao GTP/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína Supressora de Tumor p53/genéticaRESUMO
Attention-deficit/hyperactivity disorder (ADHD) is a common neuropsychiatric disorder in children. Although animal models and human brain imaging studies indicate a significant role for glutamatergic dysfunction in ADHD, there is no direct evidence that glutamatergic dysfunction is sufficient to induce ADHD-like symptoms. The glial glutamate transporter GLT1 plays a critical role in glutamatergic neurotransmission. We report here the generation of mice expressing only 20% of normal levels of the GLT1. Unlike conventional GLT1 knockout mice, these mice survive to adulthood and exhibit ADHD-like phenotypes, including hyperactivity, impulsivity and impaired memory. These findings indicate that glutamatergic dysfunction due to GLT1 deficiency, a mechanism distinct from the dopaminergic deficit hypothesis of ADHD, underlies ADHD-like symptoms.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Transportador 2 de Aminoácido Excitatório/genética , Animais , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Regulação para Baixo , Masculino , Camundongos , Camundongos Knockout , Transmissão SinápticaRESUMO
Reactive oxygen species (ROS) are not only toxic substances inducing oxidative stress but also play a role as a second messenger in signal transduction through various receptors. Previously, B cell activation was shown to involve prolonged ROS production induced by ligation of BCR. However, the mechanisms for ROS production and ROS-mediated activation in B cells are still poorly understood. In this study, we demonstrate that BCR ligation induces biphasic ROS production in both mouse spleen B cells and the mouse B cell line BAL17; transient and modest ROS production is followed by sustained and robust ROS production at 2-6 h after BCR ligation. ROS production in the late phase but not in the early phase augments activation of signaling pathways, such as the NF-κB and PI3K pathways, and is essential for B cell proliferation. ROS production in the late phase appears to be mediated by NADPH oxidases (NOXes) because prolonged ROS production is inhibited by various NOX inhibitors, including the specific inhibitor VAS2870. BCR ligation-induced ROS production is also inhibited by CRISPR/Cas9-mediated deletion of either the Cyba gene encoding p22phox, the regulator of NOX1-4 required for their activation, or NOX3, whereas ROS production is not affected by double deficiency of the DUOXA1 and DUOXA2 genes essential for the activation of the NOX isoforms DUOX1 and DUOX2. These results indicate that NOXes play a crucial role in sustained but not early BCR signaling and suggest an essential role of NOX-dependent sustained BCR signaling in B cell activation.
Assuntos
Linfócitos B/imunologia , Proliferação de Células , NADPH Oxidases/imunologia , Espécies Reativas de Oxigênio/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Transdução de Sinais/imunologia , Animais , Linfócitos B/citologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , NADPH Oxidases/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/imunologia , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Receptores de Antígenos de Linfócitos B/genética , Transdução de Sinais/genéticaRESUMO
BACKGROUND: Splicing factor 3B subunit 4 (SF3B4) is a causative gene of an acrofacial dysostosis, Nager syndrome. Although in vitro analyses of SF3B4 have proposed multiple noncanonical functions unrelated to splicing, less information is available based on in vivo studies using model animals. RESULTS: We performed expression and functional analyses of Sf3b4 in mice. The mouse Sf3b4 transcripts were found from two-cell stage, and were ubiquitously present during embryogenesis with high expression levels in several tissues such as forming craniofacial bones and brain. In contrast, expression of a pseudogene-like sequence of mouse Sf3b4 (Sf3b4_ps) found by in silico survey was not detected up to embryonic day 10. We generated a Sf3b4 knockout mouse using CRISPR-Cas9 system. The homozygous mutant mouse of Sf3b4 was embryonic lethal. The heterozygous mutant of Sf3b4 mouse (Sf3b4+/- ) exhibited smaller body size compared to the wild-type from postnatal to adult period, as well as homeotic posteriorization of the vertebral morphology and flattened calvaria. The flattened calvaria appears to be attributable to mild microcephaly due to a lower cell proliferation rate in the forebrain. CONCLUSIONS: Our study suggests that Sf3b4 controls anterior-posterior patterning of the axial skeleton and guarantees cell proliferation for forebrain development in mice.
Assuntos
Prosencéfalo/metabolismo , Esqueleto/metabolismo , Animais , Feminino , Masculino , Camundongos , Mutação/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismoRESUMO
Diffusion functional magnetic resonance imaging (DfMRI) has been proposed as an alternative functional imaging method to detect brain activity without confounding hemodynamic effects. Here, taking advantage of this DfMRI feature, we investigated abnormalities of dynamic brain function in a neuropsychiatric disease mouse model (glial glutamate transporter-knockdown mice with obsessive-compulsive disorder [OCD]-related behavior). Our DfMRI approaches consisted of three analyses: resting state brain activity, functional connectivity, and propagation of neural information. We detected hyperactivation and biased connectivity across the cortico-striatal-thalamic circuitry, which is consistent with known blood oxygen-level dependent (BOLD)-fMRI patterns in OCD patients. In addition, we performed ignition-driven mean integration (IDMI) analysis, which combined activity and connectivity analyses, to evaluate neural propagation initiated from brain activation. This analysis revealed an unbalanced distribution of neural propagation initiated from intrinsic local activation to the global network, while these were not detected by the conventional method with BOLD-fMRI. This abnormal function detected by DfMRI was associated with OCD-related behavior. Together, our comprehensive DfMRI approaches can successfully provide information on dynamic brain function in normal and diseased brains.
Assuntos
Encéfalo/patologia , Encéfalo/fisiopatologia , Imagem de Difusão por Ressonância Magnética , Transtorno Obsessivo-Compulsivo/patologia , Transtorno Obsessivo-Compulsivo/fisiopatologia , Animais , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Modelos Animais de Doenças , Transportador 2 de Aminoácido Excitatório/genética , Técnicas de Silenciamento de Genes , Camundongos , Vias Neurais/diagnóstico por imagem , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Transtorno Obsessivo-Compulsivo/diagnóstico por imagemRESUMO
The Cre-loxP recombination system is widely used to generate genetically modified mice for biomedical research. Recently, a highly efficient photoactivatable Cre (PA-Cre) based on reassembly of split Cre fragments has been established. This technology enables efficient DNA recombination that is activated upon blue light illumination with spatiotemporal precision. In this study, we generated a tTA-dependent photoactivatable Cre-loxP recombinase knock-in mouse model (TRE-PA-Cre mice) using a CRISPR/Cas9 system. These mice were crossed with ROSA26-tdTomato mice (Cre reporter mouse) to visualize DNA recombination as marked by tdTomato expression. We demonstrated that external noninvasive LED blue light illumination allows efficient DNA recombination in the liver of TRE-PA-Cre:ROSA26-tdTomato mice transfected with tTA expression vectors using hydrodynamic tail vein injection. The TRE-PA-Cre mouse established here promises to be useful for optogenetic genome engineering in a noninvasive, spatiotemporal, and cell-type specific manner in vivo.
Assuntos
Técnicas de Introdução de Genes , Engenharia Genética , Genoma , Integrases/metabolismo , Optogenética , Animais , Sequência de Bases , DNA/genética , Feminino , Luz , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais , Tetraciclina/farmacologiaRESUMO
AIM: Previous reports showed associations between oxytocin induced labor and mental disorders in offspring. However, those reports are restricted in epidemiological analyses and its mechanism remains unclear. In this study, we hypothesized that induced labor directly causes brain damage in newborns and results in the development of mental disorders. Therefore we aimed to investigate this hypothesis with animal model. METHODS: The animal model of induced labor was established by subcutaneous oxytocin administration to term-pregnant C57BL/6J mice. We investigated the neonatal brain damage with evaluating immediate early gene expression (c-Fos, c-Jun and JunB) by quantitative polymerase reaction and TdT-mediated dUTP nick end labeling staining. To investigate the injured brain cell types, we performed double-immunostaining with TdT-mediated dUTP nick end labeling staining and each brain component specific protein, such as Oligo2, NeuN, GFAP and Iba1. RESULTS: Brain damage during induced labor led to cell death in specific brain regions, which are implicated in mental disorders, in only male offspring at P0. Furthermore, oligodendrocyte precursors were selectively vulnerable compared to the other cell types. This oligodendrocyte-specific impairment during the perinatal period led to an increased numbers of Olig2-positive cells at P5. Expression levels of oxytocin and Oxtr in the fetal brain were not affected by the oxytocin administered to mothers during induced labor. CONCLUSION: Oligodendrocyte cell death in specific brain regions, which was unrelated to the oxytocin itself, was caused by induced labor in only male offspring. This may be an underlying mechanism explaining the human epidemiological data suggesting an association between induced labor and mental disorders.
Assuntos
Morte Celular/efeitos dos fármacos , Trabalho de Parto Induzido/efeitos adversos , Oligodendroglia/efeitos dos fármacos , Ocitócicos/efeitos adversos , Ocitocina/efeitos adversos , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Feminino , Masculino , Exposição Materna/efeitos adversos , Transtornos Mentais/induzido quimicamente , Camundongos , Camundongos Endogâmicos C57BL , GravidezRESUMO
Glutamate is a major excitatory neurotransmitter and plays an important role in neuropathic pain, which is frequently caused by nerve damage. According to recent studies, nerve injury induces changes in glutamatergic transmission in the spinal cord and several supraspinal regions, including the periaqueductal gray (PAG). Among glutamate signaling components, accumulating evidence suggests that the glial glutamate transporter GLT1 plays a critical role in neuropathic pain. Indeed, GLT1 expression is reduced in the spinal cord but increased in the PAG after nerve injury, suggesting that the role of GLT1 in neuropathic pain may vary according to the brain region. In this study, we generated PAG-specific and spinal cord-specific GLT1 knockout mice. Nerve injury-induced neuropathic pain was enhanced in spinal cord-specific GLT1 knockout mice but alleviated in PAG-specific GLT1 knockout mice. Thus, nerve injury may enhance glutamatergic neurotransmission from primary sensory neurons to the post-synaptic dorsal horn following downregulation of GLT1 in the spinal cord and result in inadequate descending pain inhibition caused by GLT1 upregulation in the PAG, resulting in neuropathic pain. In addition, ceftriaxone upregulated GLT1 expression in the spinal cord, but not the PAG, of control mice and attenuated tactile hypersensitivity in nerve-injured control mice but not in nerve-injured spinal cord-specific GLT1 knockout mice. Based on these results, the anti-neuropathic pain effect of ceftriaxone is mediated by the upregulation of GLT1 expression in the spinal cord. Thus, selective upregulation of spinal GLT1 and/or downregulation of GLT1 in the PAG represents a potentially novel strategy for the treatment of neuropathic pain.
Assuntos
Transportador 2 de Aminoácido Excitatório/deficiência , Neuralgia/metabolismo , Substância Cinzenta Periaquedutal/metabolismo , Nervo Isquiático/lesões , Medula Espinal/metabolismo , Analgésicos não Narcóticos/farmacologia , Animais , Ceftriaxona/farmacologia , Modelos Animais de Doenças , Transportador 2 de Aminoácido Excitatório/genética , Temperatura Alta , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Vias Neurais/patologia , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Neuralgia/patologia , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Substância Cinzenta Periaquedutal/patologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , TatoRESUMO
BACKGROUND: CRISPR/Cas9 enables the targeting of genes in zygotes; however, efficient approaches to create loxP-flanked (floxed) alleles remain elusive. RESULTS: Here, we show that the electroporation of Cas9, two gRNAs, and long single-stranded DNA (lssDNA) into zygotes, termed CLICK (CRISPR with lssDNA inducing conditional knockout alleles), enables the quick generation of floxed alleles in mice and rats. CONCLUSIONS: The high efficiency of CLICK provides homozygous knock-ins in oocytes carrying tissue-specific Cre, which allows the one-step generation of conditional knockouts in founder (F0) mice.
Assuntos
Engenharia Genética/métodos , Alelos , Animais , Sequência de Bases , Sistemas CRISPR-Cas/genética , Injeções , Camundongos , Camundongos Knockout , Zigoto/metabolismoRESUMO
The major regulator of the neuroendocrine stress response in the brain is corticotropin releasing factor (CRF), whose transcription is controlled by CREB and its cofactors CRTC2/3 (TORC2/3). Phosphorylated CRTCs are sequestered in the cytoplasm, but rapidly dephosphorylated and translocated into the nucleus following a stressful stimulus. As the stress response is attenuated by oxytocin (OT), we tested whether OT interferes with CRTC translocation and, thereby, Crf expression. OT (1 nmol, i.c.v.) delayed the stress-induced increase of nuclear CRTC3 and Crf hnRNA levels in the paraventricular nucleus of male rats and mice, but did not affect either parameter in the absence of the stressor. The increase in Crf hnRNA levels at later time points was parallel to elevated nuclear CRTC2/3 levels. A direct effect of Thr(4) Gly(7)-OT (TGOT) on CRTC3 translocation and Crf expression was found in rat primary hypothalamic neurons, amygdaloid (Ar-5), hypothalamic (H32), and human neuroblastoma (Be(2)M17) cell lines. CRTC3, but not CRCT2, knockdown using siRNA in Be(2)M17 cells prevented the effect of TGOT on Crf hnRNA levels. Chromatin-immunoprecipitation demonstrated that TGOT reduced CRTC3, but not CRTC2, binding to the Crf promoter after 10 min of forskolin stimulation. Together, the results indicate that OT modulates CRTC3 translocation, the binding of CRTC3 to the Crf promoter and, ultimately, transcription of the Crf gene. SIGNIFICANCE STATEMENT: The neuropeptide oxytocin has been proposed to reduce hypothalamic-pituitary-adrenal (HPA) axis activation during stress. The underlying mechanisms are, however, elusive. In this study we show that activation of the oxytocin receptor in the paraventricular nucleus delays transcription of the gene encoding corticotropin releasing factor (Crf), the main regulator of the stress response. It does so by sequestering the coactivator of the transcription factor CREB, CRTC3, in the cytosol, resulting in reduced binding of CRTC3 to the Crf gene promoter and subsequent Crf gene expression. This novel oxytocin receptor-mediated intracellular mechanism might provide a basis for the treatment of exaggerated stress responses in the future.
Assuntos
Proteína de Ligação a CREB/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Regulação da Expressão Gênica , Ocitocina/farmacologia , Estresse Psicológico/metabolismo , Tromboplastina/metabolismo , Animais , Células Cultivadas , Colforsina/farmacologia , Hormônio Liberador da Corticotropina/genética , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ocitócicos/farmacologia , Ocitócicos/uso terapêutico , Ocitocina/análogos & derivados , Ocitocina/uso terapêutico , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Ratos , Ratos Wistar , Receptores de Ocitocina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/patologiaRESUMO
The neurohypophysial hormone oxytocin (OXT) and its receptor (OXTR) have critical roles in the regulation of pro-social behaviors, including social recognition, pair bonding, parental behavior, and stress-related responses. Supporting this hypothesis, a portion of patients suffering from autism spectrum disorder have mutations, such as single nucleotide polymorphisms, or epigenetic modifications in their OXTR gene. We previously reported that OXTR-deficient mice exhibit pervasive social deficits, indicating the critical role of OXTR in social behaviors. In the present study, we generated Oxtr cDNA(HA)-Ires-Cre knock-in mice, expressing both OXTR and Cre recombinase under the control of the endogenous Oxtr promoter. Knock-in cassette of Oxtr cDNA(HA)-Ires-Cre consisted of Oxtr cDNA tagged with the hemagglutinin epitope at the 3' end (Oxtr cDNA(HA)), internal ribosomal entry site (Ires), and Cre. Cre was expressed in the uterus, mammary gland, kidney, and brain of Oxtr cDNA(HA)-Ires-Cre knock-in mice. Furthermore, the distribution of Cre in the brain was similar to that observed in Oxtr-Venus fluorescent protein expressing mice (Oxtr-Venus), another animal model previously generated by our group. Social behavior of Oxtr cDNA(HA)-Ires-Cre knock-in mice was similar to that of wild-type animals. We demonstrated that this construct is expressed in OXTR-expressing neurons specifically after an infection with the recombinant adeno-associated virus carrying the flip-excision switch vector. Using this system, we showed the transport of the wheat-germ agglutinin tracing molecule from the OXTR-expressing neurons to the innervated neurons in knock-in mice. This study might contribute to the monosynaptic analysis of neuronal circuits and to the optogenetic analysis of neurons expressing OXTR.