Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844335

RESUMO

BACKGROUND: Glomerular endothelial cells are recognized to be important for maintaining the glomerular filtration barrier. ADGRF5, an adhesion G protein-coupled receptor, has been suggested to be involved in endothelial cell function. However, the role of ADGRF5 in the glomerular filtration barrier integrity remains elusive. METHODS: Cellular expression of ADGRF5 in mouse glomerulus was determined by histological analyses. The impact of ADGRF5 deletion on the glomerular morphology, kidney function, and glomerular endothelial gene/protein expression was then analyzed using ADGRF5 knockout (Adgrf5-/-) mice and human primary glomerular endothelial cells. RESULTS: ADGRF5 was specifically expressed in the capillary endothelial cells within the glomerulus. Adgrf5-/- mice developed albuminuria and impaired kidney function with morphological defects in the glomeruli, namely glomerular hypertrophy, glomerular basement membrane splitting and thickening, diaphragmed fenestration and detachment of the glomerular endothelial cells, and mesangial interposition. These defects were accompanied by the altered expression of genes responsible for glomerular basement membrane organization (type IV collagens and laminins) and Krüppel-like factor 2 (Klf2) in glomerular endothelial cells. Moreover, ADGRF5 knockdown decreased COL4A3 and COL4A4 expression and increased KLF2 expression in human primary glomerular endothelial cells. CONCLUSIONS: The loss of ADGRF5 resulted in altered gene expression in glomerular endothelial cells, and perturbed the structure and permselectivity of the glomerular filtration barrier.

2.
J Biol Chem ; 299(1): 102740, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36435196

RESUMO

Boric acid is a vital micronutrient in animals; however, excess amounts are toxic to them. Little is known about whole-body boric acid homeostasis in animals. Seawater (SW) contains 0.4 mM boric acid, and since marine fish drink SW, their urinary system was used here as a model of the boric acid excretion system. We determined that the bladder urine of a euryhaline pufferfish (river pufferfish, Takifugu obscurus) acclimated to fresh water and SW contained 0.020 and 19 mM of boric acid, respectively (a 950-fold difference), indicating the presence of a powerful excretory renal system for boric acid. Slc4a11 is a potential animal homolog of the plant boron transporter BOR1; however, mammalian Slc4a11 mediates H+ (OH-) conductance but does not transport boric acid. We found that renal expression of the pufferfish paralog of Slc4a11, Slc4a11A, was markedly induced after transfer from fresh water to SW, and Slc4a11A was localized to the apical membrane of kidney tubules. When pufferfish Slc4a11A was expressed in Xenopus oocytes, exposure to media containing boric acid and a voltage clamp elicited whole-cell outward currents, a marked increase in pHi, and increased boron content. In addition, the activity of Slc4a11A was independent of extracellular Na+. These results indicate that pufferfish Slc4a11A is an electrogenic boric acid transporter that functions as a B(OH)4- uniporter, B(OH)3-OH- cotransporter, or B(OH)3/H+ exchanger. These observations suggest that Slc4a11A is involved in the kidney tubular secretion of boric acid in SW fish, probably induced by the negative membrane potential and low pH of urine.


Assuntos
Boro , Rim , Proteínas de Membrana Transportadoras , Animais , Boro/metabolismo , Rim/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Água do Mar , Peixes , Takifugu
3.
Respir Res ; 20(1): 11, 2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30654796

RESUMO

BACKGROUND: Adhesion G-protein coupled receptor F5 (ADGRF5) was recently identified as an essential regulator of pulmonary surfactant homeostasis in alveolar type II cells. We previously showed that in addition to abnormal surfactant accumulation, Adgrf5-deficient (Adgrf5-/-) mice exhibit emphysema-like signs, suggesting a possible role for ADGRF5 in immune regulation. Here, we extended the phenotypic analysis of Adgrf5-/- mice to help understand its biological role in the lung, and especially in immune regulation. METHODS: Histological features of lungs were evaluated by Alcian blue and Masson's trichrome staining. Quantitative real-time PCR (qPCR) and western blot analyses were performed to analyze the differential expression of genes/proteins related to airway inflammation in lungs between wildtype and Adgrf5-/- mice. Acid-base status was assessed by performing blood gas tests and urine pH measurements. Inflammatory cell counting was performed using Giemsa-stained bronchoalveolar lavage cells. Serum IgE concentrations were determined by enzyme-linked immunosorbent assay. The expression of Ccl2, S100a8, S100a9, and Saa3 in primary lung endothelial cells (ECs) was determined by qPCR and/or western blotting. Finally, the effect of administrating RS504393 to 2-week-old Adgrf5-/- mice on gene expression in the lungs was analyzed by qPCR. RESULTS: Adgrf5-/- mice exhibited several features of chronic airway inflammation (mucous cell metaplasia, mucus hyperproduction, subepithelial fibrosis, respiratory acidosis, high serum IgE, mast cell accumulation, and neutrophilia) in parallel with elevated expression of genes involved in mucous cell metaplasia (Muc5ac, Muc5b, Slc26a4, and Clca1), fibrosis (Tgfb1, Col1a1, Fn1, and Tnc), and type 2 immune response (Il4, Il5, Il13, IL-25, and IL-33) at 12 and/or 30 weeks of age. In contrast, mRNA expression of Ccl2, S100a8, and S100a9 was upregulated in embryonic or neonatal Adgrf5-/- lungs as well as in lung ECs of Adgrf5-/- mice at 1 week of age. RS504393 treatment suppressed the upregulation of S100a8, S100a9, Slc26a4, and Il5 in Adgrf5-/- lungs. CONCLUSIONS: Targeted disruption of ADGRF5 results in the development of airway inflammation, which is likely mediated by the type 2 immune response and possibly CCL2-mediated inflammation. ADGRF5 also has a potential role in the regulation of genes encoding CCL2 in lung ECs, thereby maintaining immune homeostasis.


Assuntos
Bronquite/metabolismo , Quimiocina CCL2/biossíntese , Células Endoteliais/metabolismo , Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Animais , Bronquite/patologia , Quimiocina CCL2/genética , Células Endoteliais/patologia , Expressão Gênica , Humanos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
J Biol Chem ; 290(17): 11032-40, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25778400

RESUMO

Ig-Hepta/GPR116 is a member of the G protein-coupled receptor family predominantly expressed in the alveolar type II epithelial cells of the lung. Previous studies have shown that Ig-Hepta is essential for lung surfactant homeostasis, and loss of its function results in high accumulation of surfactant lipids and proteins in the alveolar space. Ig-Hepta knock-out (Ig-Hepta(-/-)) mice also exhibit emphysema-like symptoms, including accumulation of foamy alveolar macrophages (AMs), but its pathogenic mechanism is unknown. Here, we show that the bronchoalveolar lavage fluid obtained from Ig-Hepta(-/-) mice contains high levels of inflammatory mediators, lipid hydroperoxides, and matrix metalloproteinases (MMPs), which are produced by AMs. Accumulation of reactive oxygen species was observed in the AMs of Ig-Hepta(-/-) mice in an age-dependent manner. In addition, nuclear factor-κB (NF-κB) is activated and translocated into the nuclei of the AMs of Ig-Hepta(-/-) mice. Release of MMP-2 and MMP-9 from the AMs was strongly inhibited by treatment with inhibitors of oxidants and NF-κB. We also found that the level of monocyte chemotactic protein-1 is increased in the embryonic lungs of Ig-Hepta(-/-) mice at 18.5 days postcoitum, when AMs are not accumulated and activated. These results suggest that Ig-Hepta plays an important role in regulating macrophage immune responses, and its deficiency leads to local inflammation in the lung, where AMs produce excessive amounts of reactive oxygen species and up-regulate MMPs through the NF-κB signaling pathway.


Assuntos
Núcleo Celular/metabolismo , Ativação de Macrófagos , Macrófagos Alveolares/metabolismo , Enfisema Pulmonar/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Transdução de Sinais , Transporte Ativo do Núcleo Celular , Animais , Lavagem Broncoalveolar , Núcleo Celular/genética , Núcleo Celular/patologia , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Colagenases/genética , Colagenases/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos Alveolares/patologia , Camundongos , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/metabolismo , Enfisema Pulmonar/genética , Enfisema Pulmonar/patologia
5.
Exp Cell Res ; 328(1): 207-216, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25088257

RESUMO

Ubiquitin-specific protease (USP)19 is a recently identified deubiquitinating enzyme (DUB) having multiple splice variants and cellular functions. One variant encodes an endoplasmic reticulum (ER)-anchored DUB that rescues misfolded transmembrane proteins from ER-associated degradation (ERAD), but the underlying mechanism remains to be elucidated. Here, we show that USP19 interacts with the ERAD-associated E3 ubiquitin ligase MARCH6. Overexpression of USP19 delayed the degradation of MARCH6, leading to an increase in its protein level. In contrast, USP19 depletion resulted in decreased expression of MARCH6. We also show that USP19 overexpression reduced ubiquitination of MARCH6, while its knockdown had the opposite effect. In particular, USP19 was found to protect MARCH6 by deubiquitination from the p97-dependent proteasomal degradation. In addition, USP19 knockdown leads to increased expression of mutant ABCB11, an ERAD substrate of MARCH6. Moreover, USP19 is itself subjected to endoproteolytic processing by DUB activity, and the processing cleaves off an N-terminal cytoplasmic region of unknown function. However, elimination of this processing had no evident effect on MARCH6 stabilization. These results suggest that USP19 is involved in the regulation of ERAD by controlling the stability of MARCH6 via deubiquitination.


Assuntos
Endopeptidases/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Western Blotting , Células Cultivadas , Endopeptidases/química , Endopeptidases/genética , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Imunoprecipitação , Camundongos , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , RNA Interferente Pequeno/genética , Ubiquitinação
6.
Gen Comp Endocrinol ; 212: 156-62, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24815888

RESUMO

Adrenomedullins (AM) is a multifaceted distinct subfamily of peptides that belongs to the calcitonin gene-related peptide (CGRP) superfamily. These peptides exert their functional activities via associations of calcitonin receptor-like receptors (CLRs) and receptor activity-modifying proteins (RAMPs) RAMP2 and RAMP3. Recent studies established that RAMPs and CLRs can modify biochemical properties such as trafficking and glycosylation of each other. However there is very little or no understanding regarding how RAMP or CLR influence ligand-induced events of AM-receptor complex. In this study, using pufferfish homologs of CLR (mfCLR1-3) and RAMP (mfRAMP2 and mfRAMP3), we revealed that all combinations of CLR and RAMP quickly underwent ligand-induced internalization; however, their recycling rates were different as follows: mfCLR1-mfRAMP3>mfCLR2-mfRAMP3>mfCLR3-mfRAMP3. Functional receptor assay confirmed that the recycled receptors were resensitized on the plasma membrane. In contrast, a negligible amount of mfCLR1-mfRAMP2 was recycled and reconstituted. Immunocytochemistry results indicated that the lower recovery rate of mfCLR3-mfRAMP3 and mfCLR1-mfRAMP2 was correlated with higher proportion of lysosomal localization of these receptor complexes compared to the other combinations. Collectively our results indicate, for the first time, that the ligand-induced internalization, recycling, and reconstitution properties of RAMP-CLR receptor complexes depend on the receptor-complex as a whole, and not on individual CLR or RAMP alone.


Assuntos
Proteína Semelhante a Receptor de Calcitonina/metabolismo , Membrana Celular/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Proteína 3 Modificadora da Atividade de Receptores/metabolismo , Receptores de Adrenomedulina/metabolismo , Adrenomedulina/metabolismo , Animais , Western Blotting , Peptídeo Relacionado com Gene de Calcitonina , Peixes , Citometria de Fluxo , Glicosilação , Técnicas Imunoenzimáticas , Ligantes , Transporte Proteico
7.
Am J Physiol Regul Integr Comp Physiol ; 306(5): R315-27, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24401990

RESUMO

Zebrafish Na(+)/H(+) exchanger 3b (zNHE3b) is highly expressed in the apical membrane of ionocytes where Na(+) is absorbed from ion-poor fresh water against a concentration gradient. Much in vivo data indicated that zNHE3b is involved in Na(+) absorption but not leakage. However, zNHE3b-mediated Na(+) absorption has not been thermodynamically explained, and zNHE3b activity has not been measured. To address this issue, we overexpressed zNHE3b in Xenopus oocytes and characterized its activity by electrophysiology. Exposure of zNHE3b oocytes to Na(+)-free media resulted in significant decrease in intracellular pH (pH(i)) and intracellular Na(+) activity (aNa(i)). aNa(i) increased significantly when the cytoplasm was acidified by media containing CO2-HCO3(-) or butyrate. Activity of zNHE3b was inhibited by amiloride or 5-ethylisopropyl amiloride (EIPA). Although the activity was accompanied by a large hyperpolarization of ∼50 mV, voltage-clamp experiments showed that Na(+)/H(+) exchange activity of zNHE3b is electroneutral. Exposure of zNHE3b oocytes to medium containing NH3/NH4(+) resulted in significant decreases in pH(i) and aNa(i) and significant increase in intracellular NH4(+) activity, indicating that zNHE3b mediates the Na(+)/NH4(+) exchange. In low-Na(+) (0.5 mM) media, zNHE3b oocytes maintained aNa(i) of 1.3 mM, and Na(+)-influx was observed when pHi was decreased by media containing CO2-HCO3(-) or butyrate. These results provide thermodynamic evidence that zNHE3b mediates Na(+) absorption from ion-poor fresh water by its Na(+)/H(+) and Na(+)/NH4(+) exchange activities.


Assuntos
Compostos de Amônio/metabolismo , Oócitos/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Sódio/metabolismo , Xenopus , Peixe-Zebra , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Amilorida/análogos & derivados , Amilorida/farmacologia , Animais , Fenômenos Eletrofisiológicos , Água Doce/química , Regulação da Expressão Gênica/fisiologia , Concentração de Íons de Hidrogênio , Microeletrodos , Trocadores de Sódio-Hidrogênio/genética , Termodinâmica
8.
Am J Physiol Regul Integr Comp Physiol ; 307(5): R525-37, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24965791

RESUMO

The kidney of marine teleosts is the major site of Mg(2+) excretion and produces urine with a high Mg(2+) concentration. However, the transporters involved in Mg(2+) excretion are poorly understood. The cyclin M (Cnnm; also known as ancient conserved domain protein) family comprises membrane proteins homologous to the bacterial Mg(2+) and Co(2+) efflux protein, CorC. To understand the molecular mechanism of Mg(2+) homeostasis in marine teleosts, we analyzed the expression of the Cnnm family genes in the seawater (SW) pufferfish, torafugu (Takifugu rubripes), and the closely related euryhaline species, mefugu (Takifugu obscurus). Database mining and phylogenetic analysis indicated that the Takifugu genome contains six members of the Cnnm family: two orthologs of Cnnm1, one of Cnnm2, one of Cnnm3, and two of Cnnm4. RT-PCR analyses indicated that Cnnm2, Cnnm3, and Cnnm4a are expressed in the kidney, whereas other members are mainly expressed in the brain. Renal expression of Cnnm3 was upregulated in SW mefugu, whereas renal expression of Cnnm2 was upregulated in freshwater (FW) mefugu. No significant difference was observed in renal expression of Cnnm4a between SW and FW mefugu. In situ hybridization and immunohistochemical analyses of the SW mefugu kidney revealed that Cnnm3 is expressed in the proximal tubule, and its product localizes to the lateral membrane. When Cnnm3 was expressed in Xenopus laevis oocytes, whole cellular Mg(2+) content and free intracellular Mg(2+) activity significantly decreased. These results suggest that Cnnm3 is involved in body fluid Mg(2+) homeostasis in marine teleosts.


Assuntos
Ciclinas/metabolismo , Túbulos Renais Proximais/metabolismo , Sistema da Linha Lateral/metabolismo , Magnésio/metabolismo , Takifugu/fisiologia , Sequência de Aminoácidos , Animais , Ciclinas/genética , Genoma , Homeostase/fisiologia , Dados de Sequência Molecular , Filogenia
9.
Biochem J ; 450(1): 179-87, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23205667

RESUMO

Secretion of HCO(3)- at the apical side of the epithelial cells of the choroid plexus is an essential step in the formation of cerebrospinal fluid. Anion conductance with a high degree of HCO(3)- permeability has been observed and suggested to be the major pathway for HCO(3)- transport across the apical membrane. Recently, it was found that NBC (Na(+)/HCO(3)- co-transporter) 4, an electrogenic member of the NBC family, was expressed in the choroid plexus. We found that a novel variant of the NBC4 [NBC4g/Slc4a5 (solute carrier family 4, sodium bicarbonate co-transporter, member 5)] is almost exclusively expressed in the apical membrane of rat choroid plexus epithelium at exceptionally high levels. RNA interference-mediated knockdown allowed the functional demonstration that NBC4g is the major player in the HCO(3)- transport across the apical membrane of the choroid plexus epithelium. When combined with a recent observation that in choroid plexus epithelial cells electrogenic NBC operates with a stoichiometry of 3:1, the results of the present study suggest that NBC4g mediates the efflux of HCO(3)- and contributes to cerebrospinal fluid production.


Assuntos
Plexo Corióideo/metabolismo , Simportadores de Sódio-Bicarbonato/genética , Animais , Bicarbonatos/metabolismo , Células HEK293 , Células HeLa , Humanos , Transporte de Íons , Masculino , Ratos , Ratos Wistar , Simportadores de Sódio-Bicarbonato/metabolismo
10.
Histochem Cell Biol ; 139(3): 447-60, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23104140

RESUMO

Spermatogenesis is a highly complicated metamorphosis process of male germ cells. Recent studies have provided evidence that the ubiquitin-proteasome system plays an important role in sperm head shaping, but the underlying mechanism is less understood. In this study, we localized membrane-associated RING-CH (MARCH)7, an E3 ubiquitin ligase, in rat testis. Northern blot analysis showed that March7 mRNA is expressed ubiquitously but highly in the testis and ovary. In situ hybridization of rat testis demonstrated that March7 mRNA is expressed weakly in spermatogonia and its level is gradually increased as they develop. Immunohistochemical analysis detected MARCH7 protein expression in spermiogenic cells from late round spermatids to elongated spermatids and in epididymal spermatozoa. Moreover, MARCH7 was found to be localized to the caudal end of the developing acrosome of late round and elongating spermatids, colocalizing with ß-actin, a component of the acroplaxome. In addition, MARCH7 was also detected in the developing flagella and its expression levels were prominent in elongated spermatids. We also showed that MARCH7 catalyzes lysine 48 (K48)-linked ubiquitination. Immunolocalization studies revealed that K48-linked ubiquitin chains were detected in the heads of elongating spermatids and in the acrosome/acroplaxome, neck, midpiece and cytoplasmic lobes of elongated spermatids. These results suggest that MARCH7 is involved in spermiogenesis by regulating the structural and functional integrity of the head and tail of developing spermatids.


Assuntos
Cabeça do Espermatozoide/metabolismo , Cauda do Espermatozoide/metabolismo , Espermátides/enzimologia , Espermátides/crescimento & desenvolvimento , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Células HEK293 , Humanos , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Espermátides/citologia , Espermatogênese , Ubiquitina-Proteína Ligases/genética
11.
Am J Physiol Regul Integr Comp Physiol ; 305(4): R385-96, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23761638

RESUMO

The second most abundant cation in seawater (SW), Mg²âº, is present at concentrations of ~53 mM. Marine teleosts maintain plasma Mg²âº concentration at 1-2 mM by excreting Mg²âº into the urine. Urine Mg²âº concentrations of SW teleosts exceed 70 mM, most of which is secreted by the renal tubular epithelial cells. However, molecular mechanisms of the Mg²âº secretion have yet to be clarified. To identify transporters involved in Mg²âº secretion, we analyzed the expression of fish homologs of the Slc41 Mg²âº transporter family in various tissues of SW pufferfish torafugu (Takifugu rubripes) and its closely related euryhaline species mefugu (Takifugu obscurus). Takifugu genome contained five members of Slc41 genes, and only Slc41a1 was highly expressed in the kidney. Renal expression of Slc41a1 was markedly elevated when mefugu were transferred from fresh water (FW) to SW. In situ hybridization analysis and immunohistochemistry at the light and electron microscopic levels revealed that Slc41a1 is localized to vacuoles in the apical cytoplasm of the proximal tubules. These results suggest that pufferfish Slc41a1 is a Mg²âº transporter involved in renal tubular transepithelial Mg²âº secretion by mediating Mg²âº transport from the cytosol to the vacuolar lumen, and support the hypothesis that Mg²âº secretion is mediated by exocytosis of Mg²âº-rich vacuoles to the lumen.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Proteínas de Peixes/metabolismo , Túbulos Renais Proximais/metabolismo , Magnésio/metabolismo , Água do Mar , Takifugu/metabolismo , Aclimatação , Sequência de Aminoácidos , Animais , Células COS , Proteínas de Transporte de Cátions/genética , Chlorocebus aethiops , Citosol/metabolismo , Exocitose , Proteínas de Peixes/genética , Imuno-Histoquímica , Hibridização In Situ , Túbulos Renais Proximais/ultraestrutura , Magnésio/sangue , Magnésio/urina , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Filogenia , RNA Mensageiro/metabolismo , Takifugu/anatomia & histologia , Takifugu/genética , Transfecção , Regulação para Cima , Vacúolos/metabolismo , Xenopus laevis
12.
Am J Physiol Regul Integr Comp Physiol ; 304(10): R865-76, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23485868

RESUMO

Na(+)/H(+) exchanger 3 (NHE3) provides one of the major Na(+) absorptive pathways of the intestine and kidney in mammals, and recent studies of aquatic vertebrates (teleosts and elasmobranchs) have demonstrated that NHE3 is expressed in the gill and plays important roles in ion and acid-base regulation. To understand the role of NHE3 in elasmobranch osmoregulatory organs, we analyzed renal and intestinal expressions and localizations of NHE3 in a marine elasmobranch, Japanese banded houndshark (Triakis scyllium). mRNA for Triakis NHE3 was most highly expressed in the gill, kidney, spiral intestine, and rectum. The kidney and intestine expressed a transcriptional isoform of NHE3 (NHE3k/i), which has a different amino terminus compared with that of NHE3 isolated from the gill (NHE3g), suggesting that NHE3k/i and NHE3g arise from a single gene by alternative promoter usage. Immunohistochemical analyses of the Triakis kidney demonstrated that NHE3k/i is expressed in the apical membrane of a part of the proximal and late distal tubules in the sinus zone. In the bundle zone of the kidney, NHE3k/i was expressed in the apical membrane of the early distal tubules known as the diluting segment. In the spiral intestine and rectum, NHE3k/i was localized toward the apical membrane of the epithelial cells. The transcriptional levels of NHE3k/i were increased in the kidney when Triakis was acclimated in 130% seawater, whereas those in the spiral intestine were increased in fish acclimated in diluted seawater. These results suggest that NHE3 is involved in renal Na(+) reabsorption, urine acidification, and intestinal Na(+) absorption in elasmobranchs.


Assuntos
Mucosa Intestinal/metabolismo , Rim/metabolismo , Isoformas de Proteínas/metabolismo , Tubarões/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Transporte de Íons/fisiologia , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Tubarões/genética , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/genética , Equilíbrio Hidroeletrolítico/fisiologia
13.
Physiol Rep ; 11(6): e15655, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36967473

RESUMO

Marine teleosts ingest large amounts of seawater containing various ions, including 0.4 mM boric acid, which can accumulate at toxic levels in the body. However, the molecular mechanisms by which marine teleosts absorb and excrete boric acid are not well understood. Aquaporins (Aqps) are homologous to the nodulin-like intrinsic protein (NIP) family of plant boric acid channels. To investigate the potential roles of Aqps on boric acid transport across the plasma membrane in marine teleosts, we analyzed the function of Aqps of Japanese pufferfish (Takifugu rubripes) expressed in Xenopus laevis oocytes. Takifugu genome database contains 16 genes encoding the aquaporin family members (aqp0a, aqp0b, aqp1aa, aqp1ab, aqp3a, aqp4a, aqp7, aqp8bb, aqp9a, aqp9b, aqp10aa, aqp10bb, aqp11a, aqp11b, aqp12, and aqp14). When T. rubripes Aqps (TrAqps) were expressed in X. laevis oocytes, a swelling assay showed that boric acid permeability was significantly increased in oocytes expressing TrAqp3a, 7, 8bb, 9a, and 9b. The influx of boric acid into these oocytes was also confirmed by elemental quantification. Electrophysiological analysis using a pH microelectrode showed that these TrAqps increase B(OH)3 permeability. These results indicate that TrAqp3a, 7, 8bb, 9a, and 9b act as boric acid transport systems, likely as channels, in marine teleosts.


Assuntos
Aquaporinas , Animais , Xenopus laevis/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Oócitos/metabolismo , Ácidos Bóricos/metabolismo
14.
Am J Physiol Cell Physiol ; 302(8): C1083-95, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22159080

RESUMO

Marine fish drink seawater and eliminate excess salt by active salt transport across gill and gut epithelia. Euryhaline pufferfish (Takifugu obscurus, mefugu) forms a CaCO(3) precipitate on the luminal gut surface after transitioning to seawater. NBCe1 (Slc4a4) at the basolateral membrane of intestinal epithelial cell plays a major role in transepithelial intestinal HCO(3)(-) secretion and is critical for mefugu acclimation to seawater. We assayed fugu-NBCe1 (fNBCe1) activity in the Xenopus oocyte expression system. Similar to NBCe1 found in other species, fNBCe1 is an electrogenic Na(+)/HCO(3)(-) cotransporter and sensitive to the stilbene inhibitor DIDS. However, our experiments revealed several unique and distinguishable fNBCe1 transport characteristics not found in mammalian or other teleost NBCe1-orthologs: electrogenic Li(+)/nHCO(3)(-) cotransport; HCO(3)(-) independent, DIDS-insensitive transport; and increased basal intracellular Na(+) accumulation. fNBCe1 is a voltage-dependent Na(+)/nHCO(3)(-) cotransporter that rectifies, independently from the extracellular Na(+) or HCO(3)(-) concentration, around -60 mV. Na(+) removal (0Na(+) prepulse) is necessary to produce the true HCO(3)(-)-elicited current. HCO(3)(-) addition results in huge outward currents with quick current decay. Kinetic analysis of HCO(3)(-) currents reveals that fNBCe1 has a much higher transport capacity (higher maximum current) and lower affinity (higher K(m)) than human kidney NBCe1 (hkNBCe1) does in the physiological range (membrane potential = -80 mV; [HCO(3)(-)] = 10 mM). In this state, fNBCe1 is in favor of operating as transepithelial HCO(3)(-) secretion, opposite of hkNBCe1, from blood to the luminal side. Thus, fugu-NBCe1 represents the first ortholog-based tool to study amino acid substitutions in NBCe1 and how those change ion and voltage dependence.


Assuntos
Simportadores de Sódio-Bicarbonato/metabolismo , Takifugu/fisiologia , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Substituição de Aminoácidos/efeitos dos fármacos , Animais , Bicarbonatos/metabolismo , Transporte Biológico/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Feminino , Humanos , Cinética , Lítio/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Sódio/metabolismo , Simportadores de Sódio-Bicarbonato/genética , Takifugu/genética , Takifugu/metabolismo , Xenopus laevis
15.
J Biol Chem ; 286(45): 39082-90, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21937444

RESUMO

Spermiogenesis is a complex and dynamic process of the metamorphosis of spermatids into spermatozoa. There is a great deal that is still unknown regarding the regulatory mechanisms for the formation of the sperm flagellum. In this study, we determined that the membrane-associated RING-CH 10 (March10) gene is predominantly expressed in rat testis. We isolated two March10 isoforms encoding MARCH10a and MARCH10b, which are generated by alternative splicing. MARCH10a is a long RING finger protein, and MARCH10b is a short RING finger-less protein. Immunohistochemical staining revealed that the MARCH10 proteins are specifically expressed in elongating and elongated spermatids, and the expression is absent in epididymal spermatozoa. MARCH10 immunoreactivity was observed in the cytoplasmic lobes as well as the principal piece and annulus of the flagella. When overexpressed in COS7 cells, MARCH10a was localized along the microtubules, whereas MARCH10b was distributed throughout the cytoplasm. An in vitro microtubule cosedimentation assay showed that MARCH10a is directly associated with microtubules. An in vitro ubiquitination assay demonstrated that the RING finger domain of MARCH10a exhibits an E3 ubiquitin ligase activity along with the E2 ubiquitin-conjugating enzyme UBE2B. Moreover, MARCH10a undergoes proteasomal degradation by autoubiquitination in transfected COS7 cells, but this activity was abolished upon microtubule disassembly. These results suggest that MARCH10 is involved in spermiogenesis by regulating the formation and maintenance of the flagella in developing spermatids.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Microtúbulos/enzimologia , Cauda do Espermatozoide/enzimologia , Espermátides/enzimologia , Espermatogênese/fisiologia , Ubiquitina-Proteína Ligases/biossíntese , Animais , Sequência de Bases , Células COS , Chlorocebus aethiops , Citoplasma/enzimologia , Citoplasma/genética , Isoenzimas/biossíntese , Isoenzimas/genética , Masculino , Microtúbulos/genética , Dados de Sequência Molecular , Ratos , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/fisiologia
16.
J Cell Physiol ; 227(3): 1130-7, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21567402

RESUMO

Non-alcoholic steatohepatitis (NASH), a progressive form of fatty liver, shares histological similarities with alcoholic steatohepatitis (ASH), including accumulated fat, hepatic apoptosis, and fibrous tissues in the liver, but the molecular mechanisms responsible for hepatic apoptosis remain unclear. We previously reported that transglutaminase 2 (TG2), induced in the nuclei of ethanol-treated hepatocytes, crosslinks and inactivates the transcription factor Sp1, leading to hepatic apoptosis. In this study, we investigated whether a similar change is involved in NASH, and if so, how TG2 and crosslinked Sp1 (CLSp1) are induced. Elevated nuclear TG2 and CLSp1 formation was demonstrated in NASH patients, as well as increased activation of apoptosis inducing factor (AIF) and release of cytochrome c. In Hc human normal hepatocytes treated with free fatty acids (FFAs), biochemical analyses revealed that ethanol and FFAs provoked fat accumulation, endoplasmic reticulum (ER) stress, increased nuclear factor kappa B (NFκB), and nuclear TG2. Salubrinal, a selective inhibitor of the ER stress-induced pancreatic ER kinase (PERK) signaling pathway, inhibited NFκB activation, nuclear TG2 expression, and apoptosis only if it was induced by FFAs, but not by ethanol. These results suggest that FFAs could increase ER stress and lead to nuclear NFκB activation and TG2 induction through PERK-dependent pathways, resulting in TG2-mediated apoptosis accompanying crosslinking and inactivation of Sp1, activation of AIF, and release of cytochrome c.


Assuntos
Apoptose/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Ácidos Graxos não Esterificados/fisiologia , Fígado Gorduroso/enzimologia , Proteínas de Ligação ao GTP/fisiologia , Hepatócitos/enzimologia , Transglutaminases/fisiologia , eIF-2 Quinase/fisiologia , Apoptose/efeitos dos fármacos , Células Cultivadas , Cinamatos/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Etanol/farmacologia , Fígado Gorduroso/patologia , Proteínas de Ligação ao GTP/biossíntese , Proteínas de Ligação ao GTP/genética , Técnicas de Silenciamento de Genes , Hepatócitos/citologia , Humanos , NF-kappa B/biossíntese , Hepatopatia Gordurosa não Alcoólica , Proteína 2 Glutamina gama-Glutamiltransferase , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fator de Transcrição Sp1/antagonistas & inibidores , Tioureia/análogos & derivados , Tioureia/farmacologia , Transglutaminases/biossíntese , Transglutaminases/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia , eIF-2 Quinase/antagonistas & inibidores
17.
Biochem Biophys Res Commun ; 418(4): 824-9, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22321396

RESUMO

Adrenomedullins (AM) form a multifunctional subfamily of the calcitonin gene-related peptide (CGRP) superfamily, the members of which exert their physiological roles through a 1:1 combination of calcitonin receptor-like receptors (CLRs) and receptor activity-modifying proteins (RAMPs). It has been shown that RAMPs can modify the biochemical properties of CLRs; for example, RAMP escorts CLR to the plasma membrane, affects glycosylation state of CLR, and transforms the ligand selectivity of CLR, but on the other hand the effects of CLRs on the biochemical and functional properties of the partner RAMPs are not well established. In this study, using pufferfish (mefugu, mf) homolog, we revealed that mfCLR1 could affect the post-translational modification and trafficking pathway of mfRAMP1. In addition, mfCLRs boosted mfRAMP1, mfRAMP2b, and mfRAMP3 translocation to cell surface. We further revealed that mfRAMPs, except mfRAMP1 and mfRAMP3, could be expressed as multimers on the plasma membrane. However, only monomeric form of mfRAMP2a, mfRAMP4, and mfRAMP5 could heteromerize with mfCLR1 but not with mfCLR2 or mfCLR3, which was consistent with their abilities to induce cAMP response. Collectively our results indicate that the glycosylation, subcellular trafficking, and pharmacological properties of the components of RAMP-CLR receptor complexes are regulated in an interdependent manner.


Assuntos
Proteína Semelhante a Receptor de Calcitonina/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Animais , Células COS , Chlorocebus aethiops , Glicosilação , Humanos , Takifugu/metabolismo
18.
Biochem Biophys Res Commun ; 417(1): 564-9, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22177956

RESUMO

Luminal surface of the swimbladder is covered by gas gland epithelial cells and is responsible for inflating the swimbladder by generating O(2) from Root-effect hemoglobin that releases O(2) under acidic conditions. Acidification of blood is achieved by lactic acid secreted from gas gland cells, which are poor in mitochondria but rich in the glycolytic activity. The acidic conditions are locally maintained by a countercurrent capillary system called rete mirabile. To understand the regulation of anaerobic metabolism of glucose in the gas gland cells, we analyzed the glucose transporter expressed there and the fate of ATP generated by glycolysis. The latter is important because the ATP should be immediately consumed otherwise it strongly inhibits the glycolysis rendering the cells unable to produce lactic acid anymore. Expression analyses of glucose transporter (glut) genes in the swimbladder of fugu (Takifugu rubripes) by RT-PCR and in situ hybridization demonstrated that glut1a and glut6 are expressed in gas gland cells. Immunohistochemical analyses of metabolic enzymes demonstrated that a gluconeogenesis enzyme fructose-1,6-bisphosphatase (Fbp1) and a glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (Gapdh) are highly expressed in gas gland cells. The simultaneous catalyses of glycolysis and gluconeogenesis reactions suggest the presence of a futile cycle in gas gland cells to maintain the levels of ATP low and to generate heat that helps reduce the solubility of O(2).


Assuntos
Sacos Aéreos/citologia , Sacos Aéreos/metabolismo , Frutose-Bifosfatase/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glicogênio/metabolismo , Takifugu/metabolismo , Trifosfato de Adenosina/metabolismo , Anaerobiose , Animais , Gluconeogênese , Proteínas Facilitadoras de Transporte de Glucose/genética , Glicólise , Takifugu/anatomia & histologia
19.
Histochem Cell Biol ; 137(1): 53-65, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22075566

RESUMO

MARCH11, a RING-finger transmembrane ubiquitin ligase, is predominantly expressed in spermatids and localized to the trans-Golgi network (TGN) and multivesicular bodies (MVBs). Because ubiquitination acts as a sorting signal of cargo proteins, MARCH11 has been postulated to mediate selective protein sorting via the TGN-MVB pathway. However, the physiological substrate of MARCH11 has not been identified. In this study, we have identified and characterized SAMT1, a member of a novel 4-transmembrane protein family, which consists of four members. Samt1 mRNA and its expression product were found to be specific to the testis and were first detected in germ cells 25 days after birth in mice. Immunohistochemical analysis further revealed that SAMT1 was specifically expressed in haploid spermatids during the cap and acrosome phases. Confocal microscopic analysis showed that SAMT1 co-localized with MARCH11 as well as with fucose-containing glycoproteins, another TGN/MVB marker, and LAPM2, a late endosome/lysosome marker. Furthermore, we found that MARCH11 could increase the ubiquitination of SAMT1 and enhance its lysosomal delivery and degradation in an E3 ligase activity-dependent manner. In addition, the C-terminal region of SAMT1 was indispensable for its ubiquitination and proper localization. The other member proteins of the SAMT family also showed similar expression profile, intracellular localization, and biochemical properties, including ubiquitination by MARCH11. These results suggest that SAMT family proteins are physiological substrates of MARCH11 and are delivered to lysosomes through the TGN-MVB pathway by a ubiquitin-dependent sorting system in mouse spermatids.


Assuntos
Proteínas de Membrana/metabolismo , Espermátides/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos ICR , RNA Mensageiro/genética , Coelhos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ubiquitina-Proteína Ligases/genética
20.
Cell Tissue Res ; 348(1): 141-53, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22350848

RESUMO

In teleost fishes, it is well-established that the gill serves as an important ionoregulatory organ in addition to its primary function of respiratory gas exchange. In elasmobranch fish, however, the ionoregulatory function of the gills is still poorly understood. Although mitochondria-rich (MR) cells have also been found in elasmobranch fish, these cells are considered to function primarily in acid-base regulation. In this study, we found a novel aggregate structure made up of cells with basolaterally-expressed Na(+)/K(+)-ATPase (NKA), in addition to NKA-immunoreactive MR cells that have already been described in the gill filament and lamella. The cell aggregates, named follicularly-arranged NKA-rich cells (follicular NRCs), were found exclusively in the epithelial lining of the venous web in the cavernous region of the filament and the inter-filamental space of the gill septum. The follicular NRCs form a single-layered follicular structure with a large lumen leading to the external environment. The follicular NRCs were characterized by: (i) well-developed microvilli on the apical membrane, (ii) less prominent infoldings of the basolateral membrane and (iii) typical junction structures including deep tight junction between cells. In addition, large numbers of vesicles were observed in the cytoplasm and some of them were fused to the lateral membrane. The follicular NRCs expressed Na(+)/H(+) exchanger 3 and Ca(2+) transporter 1. The follicular NRCs thus have the characteristics of absorptive ionoregulatory cells and this suggests that the elasmobranch gill probably contributes more importantly to body fluid homeostasis than previously thought.


Assuntos
Elasmobrânquios/anatomia & histologia , Elasmobrânquios/metabolismo , Brânquias/anatomia & histologia , Brânquias/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Polaridade Celular , Forma Celular , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulação Enzimológica da Expressão Gênica , Brânquias/citologia , Brânquias/ultraestrutura , Hibridização In Situ , Junções Intercelulares/metabolismo , Junções Intercelulares/ultraestrutura , Transporte de Íons , Japão , Proteínas de Membrana Transportadoras/metabolismo , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Simportadores de Cloreto de Sódio-Potássio/genética , Simportadores de Cloreto de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Membro 2 da Família 12 de Carreador de Soluto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA