Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ophthalmology ; 131(1): 87-97, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37598860

RESUMO

PURPOSE: Late-onset Stargardt disease is a subtype of Stargardt disease type 1 (STGD1), defined by an age of onset of 45 years or older. We describe the disease characteristics, underlying genetics, and disease progression of late-onset STGD1 and highlight the differences from geographic atrophy. DESIGN: Retrospective cohort study. PARTICIPANTS: Seventy-one patients with late-onset STGD1. METHODS: Medical files were reviewed for clinical data including age at onset, initial symptoms, and best-corrected visual acuity. A quantitative and qualitative assessment of retinal pigment epithelium (RPE) atrophy was performed on fundus autofluorescence images and OCT scans. MAIN OUTCOME MEASURES: Age at onset, genotype, visual acuity, atrophy growth rates, and loss of external limiting membrane, ellipsoid zone, and RPE. RESULTS: Median age at onset was 55.0 years (range, 45-82 years). A combination of a mild and severe variant in ATP-binding cassette subfamily A member 4 (ABCA4) was the most common genotype (n = 49 [69.0%]). The most frequent allele, c.5603A→T (p.Asn1868Ile), was present in 43 of 71 patients (60.6%). No combination of 2 severe variants was found. At first presentation, all patients have flecks. Foveal-sparing atrophy was present in 33.3% of eyes, whereas 21.1% had atrophy with foveal involvement. Extrafoveal atrophy was present in 38.9% of eyes, and no atrophy was evident in 6.7% of eyes. Time-to-event curves showed a median duration of 15.4 years (95% confidence interval, 11.1-19.6 years) from onset to foveal involvement. The median visual acuity decline was -0.03 Snellen decimal per year (interquartile range [IQR], -0.07 to 0.00 Snellen decimal; 0.03 logarithm of the minimum angle of resolution). Median atrophy growth was 0.590 mm2/year (IQR, 0.046-1.641 mm2/year) for definitely decreased autofluorescence and 0.650 mm2/year (IQR, 0.299-1.729 mm2/year) for total decreased autofluorescence. CONCLUSIONS: Late-onset STGD1 is a subtype of STGD1 with most commonly 1 severe and 1 mild ABCA4 variant. The general patient presents with typical fundus flecks and retinal atrophy in a foveal-sparing pattern with preserved central vision. Misdiagnosis as age-related macular degeneration should be avoided to prevent futile invasive treatments with potential complications. In addition, correct diagnosis lends patients with late-onset STGD1 the opportunity to participate in potentially beneficial therapeutic trials for STGD1. FINANCIAL DISCLOSURE(S): The author(s) have no proprietary or commercial interest in any materials discussed in this article.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Degeneração Retiniana , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Doença de Stargardt , Estudos Retrospectivos , Transportadores de Cassetes de Ligação de ATP/genética , Eletrorretinografia , Tomografia de Coerência Óptica , Atrofia , Progressão da Doença , Angiofluoresceinografia
2.
Exp Eye Res ; 244: 109945, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815792

RESUMO

Inherited retinal dystrophies (IRDs) are characterized by photoreceptor dysfunction or degeneration. Clinical and phenotypic overlap between IRDs makes the genetic diagnosis very challenging and comprehensive genomic approaches for accurate diagnosis are frequently required. While there are previous studies on IRDs in Pakistan, causative genes and variants are still unknown for a significant portion of patients. Therefore, there is a need to expand the knowledge of the genetic spectrum of IRDs in Pakistan. Here, we recruited 52 affected and 53 normal individuals from 15 consanguineous Pakistani families presenting non-syndromic and syndromic forms of IRDs. We employed single molecule Molecular Inversion Probes (smMIPs) based panel sequencing and whole genome sequencing to identify the probable disease-causing variants in these families. Using this approach, we obtained a 93% genetic solve rate and identified 16 (likely) causative variants in 14 families, of which seven novel variants were identified in ATOH7, COL18A1, MERTK, NDP, PROM1, PRPF8 and USH2A while nine recurrent variants were identified in CNGA3, CNGB1, HGSNAT, NMNAT1, SIX6 and TULP1. The novel MERTK variant and one recurrent TULP1 variant explained the intra-familial locus heterogeneity in one of the screened families while two recurrent CNGA3 variants explained compound heterozygosity in another family. The identification of variants in known disease-associated genes emphasizes the utilization of time and cost-effective screening approaches for rapid diagnosis. The timely genetic diagnosis will not only identify any associated systemic issues in case of syndromic IRDs, but will also aid in the acceleration of personalized medicine for patients affected with IRDs.


Assuntos
Consanguinidade , Sequenciamento de Nucleotídeos em Larga Escala , Linhagem , Humanos , Paquistão , Masculino , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Criança , Mutação , Adulto , Adolescente , Análise Mutacional de DNA , Adulto Jovem , Oftalmopatias Hereditárias/genética , Oftalmopatias Hereditárias/diagnóstico , Pré-Escolar , Distrofias Retinianas/genética , Distrofias Retinianas/diagnóstico , Testes Genéticos/métodos , Sequenciamento Completo do Genoma
3.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892127

RESUMO

ABCA4 is the most frequently mutated gene leading to inherited retinal disease (IRD) with over 2200 pathogenic variants reported to date. Of these, ~1% are copy number variants (CNVs) involving the deletion or duplication of genomic regions, typically >50 nucleotides in length. An in-depth assessment of the current literature based on the public database LOVD, regarding the presence of known CNVs and structural variants in ABCA4, and additional sequencing analysis of ABCA4 using single-molecule Molecular Inversion Probes (smMIPs) for 148 probands highlighted recurrent and novel CNVs associated with ABCA4-associated retinopathies. An analysis of the coverage depth in the sequencing data led to the identification of eleven deletions (six novel and five recurrent), three duplications (one novel and two recurrent) and one complex CNV. Of particular interest was the identification of a complex defect, i.e., a 15.3 kb duplicated segment encompassing exon 31 through intron 41 that was inserted at the junction of a downstream 2.7 kb deletion encompassing intron 44 through intron 47. In addition, we identified a 7.0 kb tandem duplication of intron 1 in three cases. The identification of CNVs in ABCA4 can provide patients and their families with a genetic diagnosis whilst expanding our understanding of the complexity of diseases caused by ABCA4 variants.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Variações do Número de Cópias de DNA , Doenças Retinianas , Humanos , Transportadores de Cassetes de Ligação de ATP/genética , Doenças Retinianas/genética , Feminino , Masculino , Linhagem , Íntrons/genética , Éxons/genética , Duplicação Gênica
4.
Genet Med ; 25(3): 100345, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36524988

RESUMO

PURPOSE: Structural variants (SVs) play an important role in inherited retinal diseases (IRD). Although the identification of SVs significantly improved upon the availability of genome sequencing, it is expected that involvement of SVs in IRDs is higher than anticipated. We revisited short-read genome sequencing data to enhance the identification of gene-disruptive SVs. METHODS: Optical genome mapping was performed to improve SV detection in short-read genome sequencing-negative cases. In addition, reanalysis of short-read genome sequencing data was performed to improve the interpretation of SVs and to re-establish SV prioritization criteria. RESULTS: In a monoallelic USH2A case, optical genome mapping identified a pericentric inversion (173 megabase), with 1 breakpoint disrupting USH2A. Retrospectively, the variant could be observed in genome sequencing data but was previously deemed false positive. Reanalysis of short-read genome sequencing data (427 IRD cases) was performed which yielded 30 pathogenic SVs affecting, among other genes, USH2A (n = 15), PRPF31 (n = 3), and EYS (n = 2). Eight of these (>25%) were overlooked during previous analyses. CONCLUSION: Critical evaluation of our findings allowed us to re-establish and improve our SV prioritization and interpretation guidelines, which will prevent missing pathogenic events in future analyses. Our data suggest that more attention should be paid to SV interpretation and the current contribution of SVs in IRDs is still underestimated.


Assuntos
Genoma Humano , Doenças Retinianas , Humanos , Estudos Retrospectivos , Genoma Humano/genética , Mapeamento Cromossômico , Análise de Sequência , Doenças Retinianas/genética , Variação Estrutural do Genoma , Proteínas do Olho/genética
5.
Mol Vis ; 29: 1-12, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287645

RESUMO

Purpose: This study sought to describe the phenotype frequency and genetic basis of inherited retinal diseases (IRDs) among a nationwide cohort of Israeli Jewish patients of Ethiopian ancestry. Methods: Patients' data-including demographic, clinical, and genetic information-were obtained through members of the Israeli Inherited Retinal Disease Consortium (IIRDC). Genetic analysis was performed by either Sanger sequencing for founder mutations or next-generation sequencing (targeted next-generation sequencing or whole-exome sequencing). Results: Forty-two patients (58% female) from 36 families were included, and their ages ranged from one year to 82 years. Their most common phenotypes were Stargardt disease (36%) and nonsyndromic retinitis pigmentosa (33%), while their most common mode of inheritance was autosomal recessive inheritance. Genetic diagnoses were ascertained for 72% of genetically analyzed patients. The most frequent gene involved was ABCA4. Overall, 16 distinct IRD mutations were identified, nine of which are novel. One of them, ABCA4-c.6077delT, is likely a founder mutation among the studied population. Conclusions: This study is the first to describe IRDs' phenotypic and molecular characteristics in the Ethiopian Jewish community. Most of the identified variants are rare. Our findings can help caregivers with clinical and molecular diagnosis and, we hope, enable adequate therapy in the near future.


Assuntos
Doenças Retinianas , Retinose Pigmentar , Feminino , Humanos , Masculino , Judeus/genética , Israel/epidemiologia , Linhagem , Retina , Retinose Pigmentar/epidemiologia , Retinose Pigmentar/genética , Mutação/genética , Análise Mutacional de DNA , Transportadores de Cassetes de Ligação de ATP/genética
6.
Hum Mutat ; 43(12): 2234-2250, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36259723

RESUMO

Macular degenerations (MDs) are a subgroup of retinal disorders characterized by central vision loss. Knowledge is still lacking on the extent of genetic and nongenetic factors influencing inherited MD (iMD) and age-related MD (AMD) expression. Single molecule Molecular Inversion Probes (smMIPs) have proven effective in sequencing the ABCA4 gene in patients with Stargardt disease to identify associated coding and noncoding variation, however many MD patients still remain genetically unexplained. We hypothesized that the missing heritability of MDs may be revealed by smMIPs-based sequencing of all MD-associated genes and risk factors. Using 17,394 smMIPs, we sequenced the coding regions of 105 iMD and AMD-associated genes and noncoding or regulatory loci, known pseudo-exons, and the mitochondrial genome in two test cohorts that were previously screened for variants in ABCA4. Following detailed sequencing analysis of 110 probands, a diagnostic yield of 38% was observed. This established an ''MD-smMIPs panel," enabling a genotype-first approach in a high-throughput and cost-effective manner, whilst achieving uniform and high coverage across targets. Further analysis will identify known and novel variants in MD-associated genes to offer an accurate clinical diagnosis to patients. Furthermore, this will reveal new genetic associations for MD and potential genetic overlaps between iMD and AMD.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Degeneração Macular , Humanos , Análise Custo-Benefício , Doença de Stargardt/genética , Éxons , Degeneração Macular/diagnóstico , Degeneração Macular/genética , Mutação , Transportadores de Cassetes de Ligação de ATP/genética
7.
BMC Genet ; 21(1): 100, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32894063

RESUMO

BACKGROUND: Canine progressive retinal atrophies are a group of hereditary retinal degenerations in dogs characterised by depletion of photoreceptor cells in the retina, which ultimately leads to blindness. PRA in the Lhasa Apso (LA) dog has not previously been clinically characterised or described in the literature, but owners in the UK are advised to have their dog examined through the British Veterinary Association/ Kennel Club/ International Sheep Dog Society (BVA/KC/ISDS) eye scheme annually, and similar schemes that are in operation in other countries. After the exclusion of 25 previously reported canine retinal mutations in LA PRA-affected dogs, we sought to identify the genetic cause of PRA in this breed. RESULTS: Analysis of whole-exome sequencing data of three PRA-affected LA and three LA without signs of PRA did not identify any exonic or splice site variants, suggesting the causal variant was non-exonic. We subsequently undertook a genome-wide association study (GWAS), which identified a 1.3 Mb disease-associated region on canine chromosome 33, followed by whole-genome sequencing analysis that revealed a long interspersed element-1 (LINE-1) insertion upstream of the IMPG2 gene. IMPG2 has previously been implicated in human retinal disease; however, until now no canine PRAs have been associated with this gene. The identification of this PRA-associated variant has enabled the development of a DNA test for this form of PRA in the breed, here termed PRA4 to distinguish it from other forms of PRA described in other breeds. This test has been used to determine the genotypes of over 900 LA dogs. A large cohort of genotyped dogs was used to estimate the allele frequency as between 0.07-0.1 in the UK LA population. CONCLUSIONS: Through the use of GWAS and subsequent sequencing of a PRA case, we have identified a LINE-1 insertion in the retinal candidate gene IMPG2 that is associated with a form of PRA in the LA dog. Validation of this variant in 447 dogs of 123 breeds determined it was private to LA dogs. We envisage that, over time, the developed DNA test will offer breeders the opportunity to avoid producing dogs affected with this form of PRA.


Assuntos
Doenças do Cão/genética , Elementos Nucleotídeos Longos e Dispersos , Regiões Promotoras Genéticas , Proteoglicanas/genética , Degeneração Retiniana/veterinária , Animais , Atrofia/genética , Atrofia/veterinária , Cruzamento , Cães/genética , Frequência do Gene , Estudos de Associação Genética/veterinária , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Mutagênese Insercional , Retina/patologia , Degeneração Retiniana/genética , Sequenciamento do Exoma/veterinária
8.
Nucleic Acid Ther ; 34(3): 125-133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800942

RESUMO

The ABCA4 gene, involved in Stargardt disease, has a high percentage of splice-altering pathogenic variants, some of which cause complex RNA defects. Although antisense oligonucleotides (AONs) have shown promising results in splicing modulation, they have not yet been used to target complex splicing defects. Here, we performed AON-based rescue studies on ABCA4 complex splicing defects. Intron 13 variants c.1938-724A>G, c.1938-621G>A, c.1938-619A>G, and c.1938-514A>G all lead to the inclusion of different pseudo-exons (PEs) with and without an upstream PE (PE1). Intron 44 variant c.6148-84A>T results in multiple PE inclusions and/or exon skipping events. Five novel AONs were designed to target these defects. AON efficacy was assessed by in vitro splice assays using midigenes containing the variants of interest. All screened complex splicing defects were effectively rescued by the AONs. Although varying levels of efficacy were observed between AONs targeting the same PEs, for all variants at least one AON restored splicing to levels comparable or better than wildtype. In conclusion, AONs are a promising approach to target complex splicing defects in ABCA4.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Éxons , Íntrons , Oligonucleotídeos Antissenso , Splicing de RNA , Doença de Stargardt , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , Oligonucleotídeos Antissenso/farmacologia , Transportadores de Cassetes de Ligação de ATP/genética , Humanos , Íntrons/genética , Splicing de RNA/genética , Éxons/genética , Doença de Stargardt/genética , Doença de Stargardt/patologia , Mutação
9.
JAMA Ophthalmol ; 142(5): 463-471, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602673

RESUMO

Importance: Previous studies indicated that female sex might be a modifier in Stargardt disease, which is an ABCA4-associated retinopathy. Objective: To investigate whether women are overrepresented among individuals with ABCA4-associated retinopathy who are carrying at least 1 mild allele or carrying nonmild alleles. Data Sources: Literature data, data from 2 European centers, and a new study. Data from a Radboudumc database and from the Rotterdam Eye Hospital were used for exploratory hypothesis testing. Study Selection: Studies investigating the sex ratio in individuals with ABCA4-AR and data from centers that collected ABCA4 variant and sex data. The literature search was performed on February 1, 2023; data from the centers were from before 2023. Data Extraction and Synthesis: Random-effects meta-analyses were conducted to test whether the proportions of women among individuals with ABCA4-associated retinopathy with mild and nonmild variants differed from 0.5, including subgroup analyses for mild alleles. Sensitivity analyses were performed excluding data with possibly incomplete variant identification. χ2 Tests were conducted to compare the proportions of women in adult-onset autosomal non-ABCA4-associated retinopathy and adult-onset ABCA4-associated retinopathy and to investigate if women with suspected ABCA4-associated retinopathy are more likely to obtain a genetic diagnosis. Data analyses were performed from March to October 2023. Main Outcomes and Measures: Proportion of women per ABCA4-associated retinopathy group. The exploratory testing included sex ratio comparisons for individuals with ABCA4-associated retinopathy vs those with other autosomal retinopathies and for individuals with ABCA4-associated retinopathy who underwent genetic testing vs those who did not. Results: Women were significantly overrepresented in the mild variant group (proportion, 0.59; 95% CI, 0.56-0.62; P < .001) but not in the nonmild variant group (proportion, 0.50; 95% CI, 0.46-0.54; P = .89). Sensitivity analyses confirmed these results. Subgroup analyses on mild variants showed differences in the proportions of women. Furthermore, in the Radboudumc database, the proportion of adult women among individuals with ABCA4-associated retinopathy (652/1154 = 0.56) was 0.10 (95% CI, 0.05-0.15) higher than among individuals with other retinopathies (280/602 = 0.47). Conclusions and Relevance: This meta-analysis supports the likelihood that sex is a modifier in developing ABCA4-associated retinopathy for individuals with a mild ABCA4 allele. This finding may be relevant for prognosis predictions and recurrence risks for individuals with ABCA4-associated retinopathy. Future studies should further investigate whether the overrepresentation of women is caused by differences in the disease mechanism, by differences in health care-seeking behavior, or by health care discrimination between women and men with ABCA4-AR.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Humanos , Feminino , Transportadores de Cassetes de Ligação de ATP/genética , Masculino , Distribuição por Sexo , Doenças Retinianas/genética , Doenças Retinianas/diagnóstico , Alelos , Mutação
10.
Biomolecules ; 14(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38540785

RESUMO

Inherited macular dystrophies (iMDs) are a group of genetic disorders, which affect the central region of the retina. To investigate the genetic basis of iMDs, we used single-molecule Molecular Inversion Probes to sequence 105 maculopathy-associated genes in 1352 patients diagnosed with iMDs. Within this cohort, 39.8% of patients were considered genetically explained by 460 different variants in 49 distinct genes of which 73 were novel variants, with some affecting splicing. The top five most frequent causative genes were ABCA4 (37.2%), PRPH2 (6.7%), CDHR1 (6.1%), PROM1 (4.3%) and RP1L1 (3.1%). Interestingly, variants with incomplete penetrance were revealed in almost one-third of patients considered solved (28.1%), and therefore, a proportion of patients may not be explained solely by the variants reported. This includes eight previously reported variants with incomplete penetrance in addition to CDHR1:c.783G>A and CNGB3:c.1208G>A. Notably, segregation analysis was not routinely performed for variant phasing-a limitation, which may also impact the overall diagnostic yield. The relatively high proportion of probands without any putative causal variant (60.2%) highlights the need to explore variants with incomplete penetrance, the potential modifiers of disease and the genetic overlap between iMDs and age-related macular degeneration. Our results provide valuable insights into the genetic landscape of iMDs and warrant future exploration to determine the involvement of other maculopathy genes.


Assuntos
Degeneração Macular , Humanos , Mutação , Penetrância , Linhagem , Degeneração Macular/genética , Retina , Fenótipo , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas do Olho , Proteínas Relacionadas a Caderinas , Proteínas do Tecido Nervoso/genética
11.
Genes (Basel) ; 14(1)2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36672932

RESUMO

Macular dystrophies are a group of individually rare but collectively common inherited retinal dystrophies characterised by central vision loss and loss of visual acuity. Single molecule Molecular Inversion Probes (smMIPs) have proved effective in identifying genetic variants causing macular dystrophy. Here, a previously established smMIPs panel tailored for genes associated with macular diseases has been used to examine 57 UK macular dystrophy cases, achieving a high solve rate of 63.2% (36/57). Among 27 bi-allelic STGD1 cases, only three novel ABCA4 variants were identified, illustrating that the majority of ABCA4 variants in Caucasian STGD1 cases are currently known. We examined cases with ABCA4-associated disease in detail, comparing our results with a previously reported variant grading system, and found this model to be accurate and clinically useful. In this study, we showed that ABCA4-associated disease could be distinguished from other forms of macular dystrophy based on clinical evaluation in the majority of cases (34/36).


Assuntos
Degeneração Macular , Distrofias Retinianas , Humanos , Doença de Stargardt/genética , Degeneração Macular/genética , Alelos , Distrofias Retinianas/genética , Reino Unido , Transportadores de Cassetes de Ligação de ATP/genética
12.
Front Cell Dev Biol ; 11: 1112270, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819107

RESUMO

Introduction: Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are two groups of inherited retinal diseases (IRDs) where the rod photoreceptors degenerate followed by the cone photoreceptors of the retina. A genetic diagnosis for IRDs is challenging since >280 genes are associated with these conditions. While whole exome sequencing (WES) is commonly used by diagnostic facilities, the costs and required infrastructure prevent its global applicability. Previous studies have shown the cost-effectiveness of sequence analysis using single molecule Molecular Inversion Probes (smMIPs) in a cohort of patients diagnosed with Stargardt disease and other maculopathies. Methods: Here, we introduce a smMIPs panel that targets the exons and splice sites of all currently known genes associated with RP and LCA, the entire RPE65 gene, known causative deep-intronic variants leading to pseudo-exons, and part of the RP17 region associated with autosomal dominant RP, by using a total of 16,812 smMIPs. The RP-LCA smMIPs panel was used to screen 1,192 probands from an international cohort of predominantly RP and LCA cases. Results and discussion: After genetic analysis, a diagnostic yield of 56% was obtained which is on par with results from WES analysis. The effectiveness and the reduced costs compared to WES renders the RP-LCA smMIPs panel a competitive approach to provide IRD patients with a genetic diagnosis, especially in countries with restricted access to genetic testing.

13.
Invest Ophthalmol Vis Sci ; 63(4): 20, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35475888

RESUMO

Purpose: The effect of noncoding variants is often unknown in the absence of functional assays. Here, we characterized an ABCA4 intron 7 variant, c.859-25A>G, identified in Palestinian probands with Stargardt disease (STGD) or cone-rod dystrophy (CRD). We investigated the effect of this variant on the ABCA4 mRNA and retinal phenotype, and its prevalence in Palestine. Methods: The ABCA4 gene was sequenced completely or partially in 1998 cases with STGD or CRD. The effect of c.859-25A>G on splicing was investigated in silico using SpliceAI and in vitro using splice assays. Homozygosity mapping was performed for 16 affected individuals homozygous for c.859-25A>G. The clinical phenotype was assessed using functional and structural analyses including visual acuity, full-field electroretinography, and multimodal imaging. Results: The smMIPs-based ABCA4 sequencing revealed c.859-25A>G in 10 Palestinian probands from Hebron and Jerusalem. SpliceAI predicted a significant effect of this putative branchpoint-inactivating variant on the nearby intron 7 splice acceptor site. Splice assays revealed exon 8 skipping and two partial inclusions of intron 7, each having a deleterious effect. Additional genotyping revealed another 46 affected homozygous or compound heterozygous individuals carrying variant c.859-25A>G. Homozygotes shared a genomic segment of 59.6 to 87.9 kb and showed severe retinal defects on ophthalmoscopic evaluation. Conclusions: The ABCA4 variant c.859-25A>G disrupts a predicted branchpoint, resulting in protein truncation because of different splice defects, and is associated with early-onset STGD1 when present in homozygosity. This variant was found in 25/525 Palestinian inherited retinal dystrophy probands, representing one of the most frequent inherited retinal disease-causing variants in West-Bank Palestine.


Assuntos
Árabes , Distrofias de Cones e Bastonetes , Íntrons , Doença de Stargardt , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Árabes/genética , Distrofias de Cones e Bastonetes/genética , Humanos , Íntrons/genética , Mutação , Linhagem , Doença de Stargardt/genética
14.
Genes (Basel) ; 12(11)2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34828377

RESUMO

Canine progressive retinal atrophy (PRA) describes a group of hereditary diseases characterized by photoreceptor cell death in the retina, leading to visual impairment. Despite the identification of multiple PRA-causing variants, extensive heterogeneity of PRA is observed across and within dog breeds, with many still genetically unsolved. This study sought to elucidate the causal variant for a distinct form of PRA in the Shetland sheepdog, using a whole-genome sequencing approach. Filtering variants from a single PRA-affected Shetland sheepdog genome compared to 176 genomes of other breeds identified a single nucleotide variant in exon 11 of the Bardet-Biedl syndrome-2 gene (BBS2) (c.1222G>C; p.Ala408Pro). Genotyping 1386 canids of 155 dog breeds, 15 cross breeds and 8 wolves indicated the c.1222G>C variant was only segregated within Shetland sheepdogs. Out of 505 Shetland sheepdogs, seven were homozygous for the variant. Clinical history and photographs for three homozygotes indicated the presence of a novel phenotype. In addition to PRA, additional clinical features in homozygous dogs support the discovery of a novel syndromic PRA in the breed. The development and utilization of a diagnostic DNA test aim to prevent the mutation from becoming more prevalent in the breed.


Assuntos
Doenças do Cão/genética , Mutação de Sentido Incorreto , Proteínas/genética , Degeneração Retiniana/veterinária , Animais , Cães , Feminino , Hibridização Genética , Masculino , Fenótipo , Degeneração Retiniana/genética , Sequenciamento Completo do Genoma , Lobos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA