Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139339

RESUMO

Globally, a leg is amputated approximately every 30 seconds, with an estimated 85 percent of these amputations being attributed to complications arising from diabetic foot ulcers (DFU), as stated by the American Diabetes Association. Peripheral arterial disease (PAD) is a risk factor resulting in DFU and can, either independently or in conjunction with diabetes, lead to recurring, slow-healing ulcers and amputations. According to guidelines amputation is the recommended treatment for patients with no-option critical ischemia of the limb (CTLI). In this article we propose cell therapy as an alternative strategy for those patients. We also suggest the optimal time-frame for an effective therapy, such as implanting autologous mononuclear cells (MNCs), autologous and allogeneic mesenchymal stromal cells (MSC) as these treatments induce neuropathy relief, regeneration of the blood vessels and tissues, with accelerated ulcer healing, with no serious side effects, proving that advanced therapy medicinal product (ATMPs) application is safe and effective and, hence, can significantly prevent limb amputation.


Assuntos
Diabetes Mellitus , Pé Diabético , Doença Arterial Periférica , Doenças do Sistema Nervoso Periférico , Humanos , Pé Diabético/etiologia , Pé Diabético/terapia , Fatores de Risco , Doença Arterial Periférica/terapia , Doença Arterial Periférica/complicações , Doenças do Sistema Nervoso Periférico/complicações , Amputação Cirúrgica , Terapia Baseada em Transplante de Células e Tecidos , Isquemia/terapia , Isquemia/complicações
2.
Int J Mol Sci ; 23(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35682603

RESUMO

Mesothelial cells form the mesothelium, a simple epithelium lining the walls of serous cavities and the surface of visceral organs. Although mesothelial cells are phenotypically well characterized, their immunoregulatory properties remain largely unknown, with only two studies reporting their capacity to inhibit T cells through TGF-ß and their consumption of L-arginine by arginase-1. Whether human mesothelial cells can suppress other immune cells and possess additional leukosuppressive mechanisms, remain to be addressed to better delineate their therapeutic potential for cell therapy. Herein, we generated secretomes from omental mesothelial cells (OMC) and assess their capacity to inhibit lymphocytes proliferation, suppress activated T and B cells, as well as to modify macrophage activation markers. The secretome from mesenchymal stromal cells (MSC) served as a control of immuno-suppression. Although OMC and MSC were phenotypically divergent, their cytokine secretion patterns as well as expression of inflammatory and immunomodulary genes were similar. As such, OMC- and MSC-derived secretomes (OMC-S and MSC-S) both polarized RAW 264.7 macrophages towards a M2-like anti-inflammatory phenotype and suppressed mouse and human lymphocytes proliferation. OMC-S displayed a strong ability to suppress mouse- and human-activated CD19+/CD25+ B cells as compared to MSC-S. The lymphosuppressive activity of the OMC-S could be significantly counteracted either by SB-431542, an inhibitor of TGFß and activin signaling pathways, or with a monoclonal antibody against the TGFß1, ß2, and ß3 isoforms. A strong blockade of the OMC-S-mediated lymphosuppressive activity was achieved using L-NMMA, a specific inhibitor of nitric oxide synthase (NOS). Taken together, our results suggest that OMC are potent immunomodulators.


Assuntos
Imunomodulação , Células-Tronco Mesenquimais , Animais , Humanos , Ativação Linfocitária , Ativação de Macrófagos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Linfócitos T
3.
Int J Mol Sci ; 23(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35409280

RESUMO

The transcription factor, early growth response-1 (EGR-1), is involved in the regulation of cell differentiation, proliferation, and apoptosis in response to different stimuli. EGR-1 is described to be involved in pancreatic endoderm differentiation, but the regulatory mechanisms controlling its action are not fully elucidated. Our previous investigation reported that exposure of mouse embryonic stem cells (mESCs) to the chemical nitric oxide (NO) donor diethylenetriamine nitric oxide adduct (DETA-NO) induces the expression of early differentiation genes such as pancreatic and duodenal homeobox 1 (Pdx1). We have also evidenced that Pdx1 expression is associated with the release of polycomb repressive complex 2 (PRC2) and P300 from the Pdx1 promoter; these events were accompanied by epigenetic changes to histones and site-specific changes in the DNA methylation. Here, we investigate the role of EGR-1 on Pdx1 regulation in mESCs. This study reveals that EGR-1 plays a negative role in Pdx1 expression and shows that the binding capacity of EGR-1 to the Pdx1 promoter depends on the methylation level of its DNA binding site and its acetylation state. These results suggest that targeting EGR-1 at early differentiation stages might be relevant for directing pluripotent cells into Pdx1-dependent cell lineages.


Assuntos
Endoderma , Células-Tronco Embrionárias Murinas , Animais , Diferenciação Celular/genética , Células-Tronco Embrionárias , Endoderma/metabolismo , Camundongos , Óxido Nítrico/metabolismo
4.
Adv Exp Med Biol ; 1229: 259-271, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32285417

RESUMO

The Ischemic Heart Disease (IHD) is considered a clinical condition characterized by myocardial ischemia causing an imbalance between myocardial blood supply and demand, leading to morbidity and mortality across the worldwide. Prompt diagnostic and prognostic represents key factors for the treatment and reduction of the mortality rate. Therefore, one of the newest frontiers in cardiovascular research is related to non-coding RNAs (ncRNAs), which prompted a huge interest in exploring ncRNAs candidates for utilization as potential therapeutic targets for diagnostic and prognostic and/or biomarkers in IHD. However, there are undoubtedly many more functional ncRNAs yet to be discovered and characterized. Here we will discuss our current knowledge and we will provide insight on the roles and effects elicited by some ncRNAs related to IHD.


Assuntos
Isquemia Miocárdica , RNA não Traduzido , Biomarcadores , Humanos , Miocárdio/patologia
5.
Diabetologia ; 62(9): 1667-1680, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31250031

RESUMO

AIMS/HYPOTHESIS: Bisphenol-A (BPA) is a widespread endocrine-disrupting chemical that has been associated with type 2 diabetes development. Low doses of BPA modify pancreatic beta cell function and induce insulin resistance; some of these effects are mediated via activation of oestrogen receptors α (ERα) and ß (ERß). Here we investigated whether low doses of BPA regulate the expression and function of ion channel subunits involved in beta cell function. METHODS: Microarray gene profiling of isolated islets from vehicle- and BPA-treated (100 µg/kg per day for 4 days) mice was performed using Affymetrix GeneChip Mouse Genome 430.2 Array. Expression level analysis was performed using the normalisation method based on the processing algorithm 'robust multi-array average'. Whole islets or dispersed islets from C57BL/6J or oestrogen receptor ß (ERß) knockout (Erß-/-) mice were treated with vehicle or BPA (1 nmol/l) for 48 h. Whole-cell patch-clamp recordings were used to measure Na+ and K+ currents. mRNA expression was evaluated by quantitative real-time PCR. RESULTS: Microarray analysis showed that BPA modulated the expression of 1440 probe sets (1192 upregulated and 248 downregulated genes). Of these, more than 50 genes, including Scn9a, Kcnb2, Kcnma1 and Kcnip1, encoded important Na+ and K+ channel subunits. These findings were confirmed by quantitative RT-PCR in islets from C57BL/6J BPA-treated mice or whole islets treated ex vivo. Electrophysiological measurements showed a decrease in both Na+ and K+ currents in BPA-treated islets. The pharmacological profile indicated that BPA reduced currents mediated by voltage-activated K+ channels (Kv2.1/2.2 channels) and large-conductance Ca2+-activated K+ channels (KCa1.1 channels), which agrees with BPA's effects on gene expression. Beta cells from ERß-/- mice did not present BPA-induced changes, suggesting that ERß mediates BPA's effects in pancreatic islets. Finally, BPA increased burst duration, reduced the amplitude of the action potential and enlarged the action potential half-width, leading to alteration in beta cell electrical activity. CONCLUSIONS/INTERPRETATION: Our data suggest that BPA modulates the expression and function of Na+ and K+ channels via ERß in mouse pancreatic islets. Furthermore, BPA alters beta cell electrical activity. Altogether, these BPA-induced changes in beta cells might play a role in the diabetogenic action of BPA described in animal models.


Assuntos
Compostos Benzidrílicos/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Receptor beta de Estrogênio/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Fenóis/farmacologia , Animais , Receptor alfa de Estrogênio/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Potássio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sódio/metabolismo
6.
Mol Ther ; 26(11): 2696-2709, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30195725

RESUMO

Diabetes is a chronic metabolic disorder that affects 415 million people worldwide. This pathology is often associated with long-term complications, such as critical limb ischemia (CLI), which increases the risk of limb loss and mortality. Mesenchymal stromal cells (MSCs) represent a promising option for the treatment of diabetes complications. Although MSCs are widely used in autologous cell-based therapy, their effects may be influenced by the constant crosstalk between the graft and the host, which could affect the MSC fate potential. In this context, we previously reported that MSCs derived from diabetic patients with CLI have a defective phenotype that manifests as reduced fibrinolytic activity, thereby enhancing the thrombotic risk and compromising patient safety. Here, we found that MSCs derived from diabetic patients with CLI not only exhibit a prothrombotic profile but also have altered multi-differentiation potential, reduced proliferation, and inhibited migration and homing to sites of inflammation. We further demonstrated that this aberrant cell phenotype is reversed by the platelet-derived growth factor (PDGF) BB, indicating that PDGF signaling is a key regulator of MSC functionality. These findings provide an attractive approach to improve the therapeutic efficacy of MSCs in autologous therapy for diabetic patients.


Assuntos
Diabetes Mellitus/genética , Inflamação/genética , Células-Tronco Mesenquimais/metabolismo , Proteínas Proto-Oncogênicas c-sis/genética , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Cultivadas , Complicações do Diabetes/genética , Complicações do Diabetes/patologia , Complicações do Diabetes/terapia , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Diabetes Mellitus/terapia , Humanos , Inflamação/patologia , Inflamação/terapia , Camundongos , Camundongos SCID , Osteogênese/genética , Fenótipo , Proteínas Proto-Oncogênicas c-sis/uso terapêutico , Transdução de Sinais , Cicatrização/genética
7.
J Cell Biochem ; 117(9): 2078-88, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26853909

RESUMO

Nitric oxide (NO) delays mouse embryonic stem cell (mESC) differentiation by regulating genes linked to pluripotency and differentiation. Nevertheless, no profound study has been conducted on cell differentiation regulation by this molecule through signaling on essential biological functions. We sought to demonstrate that NO positively regulates the pluripotency transcriptional core, enforcing changes in the chromatin structure, in addition to regulating cell proliferation, and signaling pathways with key roles in stemness. Culturing mESCs with 2 µM of the NO donor diethylenetriamine/NO (DETA/NO) in the absence of leukemia inhibitory factor (LIF) induced significant changes in the expression of 16 genes of the pluripotency transcriptional core. Furthermore, treatment with DETA/NO resulted in a high occupancy of activating H3K4me3 at the Oct4 and Nanog promoters and repressive H3K9me3 and H3k27me3 at the Brachyury promoter. Additionally, the activation of signaling pathways involved in pluripotency, such as Gsk3-ß/ß-catenin, was observed, in addition to activation of PI3 K/Akt, which is consistent with the protection of mESCs from cell death. Finally, a decrease in cell proliferation coincides with cell cycle arrest in G2/M. Our results provide novel insights into NO-mediated gene regulation and cell proliferation and suggest that NO is necessary but not sufficient for the maintenance of pluripotency and the prevention of cell differentiation. J. Cell. Biochem. 117: 2078-2088, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Diferenciação Celular/fisiologia , Pontos de Checagem da Fase G2 do Ciclo Celular/fisiologia , Expressão Gênica/fisiologia , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Células-Tronco Embrionárias Murinas/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais/fisiologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Triazenos/farmacologia
8.
Mol Cell Neurosci ; 68: 73-81, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25913151

RESUMO

The neuregulins (NRGs) are a family of alternatively spliced factors that play important roles in nervous system development and disease. In motor neurons, NRG1 expression is regulated by activity and neurotrophic factors, however, little is known about what controls isoform-specific transcription. Here we show that NRG1 expression in the chick embryo increases in motor neurons that have extended their axons and that limb bud ablation before motor axon outgrowth prevents this induction, suggesting a trophic role from the developing limb. Consistently, NRG1 induction after limb bud ablation can be rescued by adding back the neurotrophic factors BDNF and GDNF. Mechanistically, BDNF induces a rapid and transient increase in type I and type III NRG1 mRNAs that peak at 4h in rat embryonic ventral spinal cord cultures. Blocking MAPK or PI3K signaling or blocking transcription with Actinomycin D blocks BDNF induced NRG1 gene induction. BDNF had no effect on mRNA degradation, suggesting that transcriptional activation rather than message stability is important. Furthermore, BDNF activates a reporter construct that includes 700bp upstream of the type I NRG1 start site. Protein synthesis is also required for type I NRG1 mRNA transcription as cycloheximide produced a super-induction of type I, but not type III NRG1 mRNA, possibly through a mechanism involving sustained activation of MAPK and PI3K. These results reveal the existence of highly responsive, transient transcriptional regulatory mechanisms that differentially modulate NRG1 isoform expression as a function of extracellular and intracellular signaling cascades and mediated by neurotrophic factors and axon-target interactions.


Assuntos
Axônios/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neurônios Motores/metabolismo , Neuregulina-1/metabolismo , Isoformas de Proteínas/metabolismo , Fatores Etários , Animais , Células Cultivadas , Embrião de Galinha , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Botões de Extremidades/lesões , Neurônios Motores/efeitos dos fármacos , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Neuregulina-1/genética , Gravidez , Biossíntese de Proteínas/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Medula Espinal/citologia , Fatores de Tempo
9.
mSystems ; 9(6): e0032524, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38700330

RESUMO

Global challenges presented by multidrug-resistant Acinetobacter baumannii infections have stimulated the development of new treatment strategies. We reported that outer membrane protein W (OmpW) is a potential therapeutic target in A. baumannii. Here, a library of 11,648 natural compounds was subjected to a primary screening using quantitative structure-activity relationship (QSAR) models generated from a ChEMBL data set with >7,000 compounds with their reported minimal inhibitory concentration (MIC) values against A. baumannii followed by a structure-based virtual screening against OmpW. In silico pharmacokinetic evaluation was conducted to assess the drug-likeness of these compounds. The ten highest-ranking compounds were found to bind with an energy score ranging from -7.8 to -7.0 kcal/mol where most of them belonged to curcuminoids. To validate these findings, one lead compound exhibiting promising binding stability as well as favorable pharmacokinetics properties, namely demethoxycurcumin, was tested against a panel of A. baumannii strains to determine its antibacterial activity using microdilution and time-kill curve assays. To validate whether the compound binds to the selected target, an OmpW-deficient mutant was studied and compared with the wild type. Our results demonstrate that demethoxycurcumin in monotherapy and in combination with colistin is active against all A. baumannii strains. Finally, the compound was found to significantly reduce the A. baumannii interaction with host cells, suggesting its anti-virulence properties. Collectively, this study demonstrates machine learning as a promising strategy for the discovery of curcuminoids as antimicrobial agents for combating A. baumannii infections. IMPORTANCE: Acinetobacter baumannii presents a severe global health threat, with alarming levels of antimicrobial resistance rates resulting in significant morbidity and mortality in the USA, ranging from 26% to 68%, as reported by the Centers for Disease Control and Prevention (CDC). To address this threat, novel strategies beyond traditional antibiotics are imperative. Computational approaches, such as QSAR models leverage molecular structures to predict biological effects, expediting drug discovery. We identified OmpW as a potential therapeutic target in A. baumannii and screened 11,648 natural compounds. We employed QSAR models from a ChEMBL bioactivity data set and conducted structure-based virtual screening against OmpW. Demethoxycurcumin, a lead compound, exhibited promising antibacterial activity against A. baumannii, including multidrug-resistant strains. Additionally, demethoxycurcumin demonstrated anti-virulence properties by reducing A. baumannii interaction with host cells. The findings highlight the potential of artificial intelligence in discovering curcuminoids as effective antimicrobial agents against A. baumannii infections, offering a promising strategy to address antibiotic resistance.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Inteligência Artificial , Descoberta de Drogas , Testes de Sensibilidade Microbiana , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Humanos , Relação Quantitativa Estrutura-Atividade , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo
10.
J Membr Biol ; 246(3): 215-30, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23188062

RESUMO

Cell-attached and inside-out patch clamp recording was used to compare the functional expression of membrane ion channels in mouse and human embryonic stem cells (ESCs). Both ESCs express mechanosensitive Ca²âº permeant cation channels (MscCa) and large conductance (200 pS) Ca²âº-sensitive K⁺ (BK(Ca²âº)) channels but with markedly different patch densities. MscCa is expressed at higher density in mESCs compared with hESCs (70 % vs. 3 % of patches), whereas the BK(Ca²âº) channel is more highly expressed in hESCs compared with mESCs (~50 % vs. 1 % of patches). ESCs of both species express a smaller conductance (25 pS) nonselective cation channel that is activated upon inside-out patch formation but is neither mechanosensitive nor strictly Ca²âº-dependent. The finding that mouse and human ESCs express different channels that sense membrane tension and intracellular [Ca²âº] may contribute to their different patterns of growth and differentiation in response to mechanical and chemical cues.


Assuntos
Canais de Cálcio/metabolismo , Células-Tronco Embrionárias/fisiologia , Mecanotransdução Celular/fisiologia , Animais , Humanos , Potenciais da Membrana/fisiologia , Camundongos , Técnicas de Patch-Clamp
11.
Br Med Bull ; 105: 85-105, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23184855

RESUMO

INTRODUCTION: New therapies with genes, tissues and cells have taken the emerging field for the treatment of many diseases. Advances on stem cell therapy research have led to international regulatory agencies to harmonize and regulate the development of new medicines with stem cells. SOURCES OF DATA: European Medicines Agency on September 15, 2012. AREAS OF AGREEMENT: Cell therapy medicinal products should be subjected to the same regulatory principles than any other medicine. AREAS OF CONTROVERSY: Their technical requirements for quality, safety and efficacy must be more specific and stringent than other biologic products and medicines. GROWING POINTS: Cell therapy medicinal products are at the cutting edge of innovation and offer a major hope for various diseases for which there are limited or no therapeutic options. AREAS TIMELY FOR DEVELOPING RESEARCH: The development of cell therapy medicinal products constitutes an alternative therapeutic strategy to conventional clinical therapy, for which no effective cure was previously available.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/estatística & dados numéricos , Doença Crônica/terapia , Qualidade de Produtos para o Consumidor/legislação & jurisprudência , Qualidade de Produtos para o Consumidor/normas , União Europeia , Humanos , Legislação de Medicamentos , Medicina , Saúde Pública/legislação & jurisprudência
12.
Proc Natl Acad Sci U S A ; 107(31): 13736-41, 2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20631301

RESUMO

The longevity-promoting NAD+-dependent class III histone deacetylase Sirtuin 1 (SIRT1) is involved in stem cell function by controlling cell fate decision and/or by regulating the p53-dependent expression of NANOG. We show that SIRT1 is down-regulated precisely during human embryonic stem cell differentiation at both mRNA and protein levels and that the decrease in Sirt1 mRNA is mediated by a molecular pathway that involves the RNA-binding protein HuR and the arginine methyltransferase coactivator-associated arginine methyltransferase 1 (CARM1). SIRT1 down-regulation leads to reactivation of key developmental genes such as the neuroretinal morphogenesis effectors DLL4, TBX3, and PAX6, which are epigenetically repressed by this histone deacetylase in pluripotent human embryonic stem cells. Our results indicate that SIRT1 is regulated during stem cell differentiation in the context of a yet-unknown epigenetic pathway that controls specific developmental genes in embryonic stem cells.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Sirtuína 1/metabolismo , Animais , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Linhagem Celular , Guanilato Ciclase/metabolismo , Humanos , Camundongos , Camundongos Knockout , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Estabilidade de RNA , Sirtuína 1/deficiência , Sirtuína 1/genética
13.
Front Immunol ; 14: 1232472, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37767093

RESUMO

An unprecedented global social and economic impact as well as a significant number of fatalities have been brought on by the coronavirus disease 2019 (COVID-19), produced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Acute SARS-CoV-2 infection can, in certain situations, cause immunological abnormalities, leading to an anomalous innate and adaptive immune response. While most patients only experience mild symptoms and recover without the need for mechanical ventilation, a substantial percentage of those who are affected develop severe respiratory illness, which can be fatal. The absence of effective therapies when disease progresses to a very severe condition coupled with the incomplete understanding of COVID-19's pathogenesis triggers the need to develop innovative therapeutic approaches for patients at high risk of mortality. As a result, we investigate the potential contribution of promising combinatorial cell therapy to prevent death in critical patients.

14.
Mater Today Bio ; 14: 100252, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35509864

RESUMO

Three-dimensional (3D) engineered cardiovascular tissues have shown great promise to replace damaged structures. Specifically, tissue engineering vascular grafts (TEVG) have the potential to replace biological and synthetic grafts. We aimed to design an in-vitro patient-specific patch based on a hybrid 3D print combined with vascular smooth muscle cells (VSMC) differentiation. Based on the medical images of a 2 months-old girl with aortic arch hypoplasia and using computational modelling, we evaluated the most hemodynamically efficient aortic patch surgical repair. Using the designed 3D patch geometry, the scaffold was printed using a hybrid fused deposition modelling (FDM) and electrospinning techniques. The scaffold was seeded with multipotent mesenchymal stem cells (MSC) for later maturation to derived VSMC (dVSMC). The graft showed adequate resistance to physiological aortic pressure (burst pressure 101 â€‹± â€‹15 â€‹mmHg) and a porosity gradient ranging from 80 to 10 â€‹µm allowing cells to infiltrate through the entire thickness of the patch. The bio-scaffolds showed good cell viability at days 4 and 12 and adequate functional vasoactive response to endothelin-1. In summary, we have shown that our method of generating patient-specific patch shows adequate hemodynamic profile, mechanical properties, dVSMC infiltration, viability and functionality. This innovative 3D biotechnology has the potential for broad application in regenerative medicine and potentially in heart disease prevention.

15.
Mol Ther Nucleic Acids ; 27: 838-853, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35141045

RESUMO

Urocortin-2 (Ucn-2) has demonstrated cardioprotective actions against myocardial ischemia-reperfusion (I/R) injuries. Herein, we explored the protective role of Ucn-2 through microRNAs (miRNAs) post-transcriptional regulation of apoptotic and pro-fibrotic genes. We determined that the intravenous administration of Ucn-2 before heart reperfusion in a Wistar rat model of I/R recovered cardiac contractility and decreased fibrosis, lactate dehydrogenase release, and apoptosis. The infusion of Ucn-2 also inhibited the upregulation of 6 miRNAs in revascularized heart. The in silico analysis indicated that miR-29a and miR-451_1∗ are predicted to target many apoptotic and fibrotic genes. Accordingly, the transfection of neonatal rat ventricular myocytes with mimics overexpressing miR-29a, but not miR-451_1∗, prevented I/R-induced expression of pro- and anti-apoptotic genes such as Apaf-1, Hmox-1, and Cycs, as well as pro-fibrotic genes Col-I and Col-III. We also confirmed that Hmox-1, target of miR-29a, is highly expressed at the mRNA and protein levels in adult rat heart under I/R, whereas, Ucn-2 abolished I/R-induced mRNA and protein upregulation of HMOX-1. Interestingly, a significant upregulation of Hmox-1 was observed in the ventricle of ischemic patients with heart failure, correlating negatively with the left ventricle ejection fraction. Altogether, these data indicate that Ucn-2, through miR-29a regulation, provides long-lasting cardioprotection, involving the post-transcriptional regulation of apoptotic and fibrotic genes.

16.
J Neurosci ; 30(40): 13305-13, 2010 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-20926656

RESUMO

Memory formation requires changes in gene expression, which are regulated by the activation of transcription factors and by changes in epigenetic factors. Poly[ADP]-ribosylation of nuclear proteins has been postulated as a chromatin modification involved in memory consolidation, although the mechanisms involved are not well characterized. Here we demonstrate that poly[ADP]-ribose polymerase 1 (PARP-1) activity and the poly[ADP]-ribosylation of proteins over a specific time course is required for the changes in synaptic plasticity related to memory stabilization in mice. At the molecular level, histone H1 poly[ADP]-ribosylation was evident in the hippocampus after the acquisition period, and it was selectively released in a PARP-1-dependent manner at the promoters of cAMP response element-binding protein and nuclear factor-κB dependent genes associated with learning and memory. These findings suggest that histone H1 poly[ADP]-ribosylation, and its loss at specific loci, is an epigenetic mechanism involved in the reprogramming of neuronal gene expression required for memory consolidation.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Aprendizagem/fisiologia , Poli Adenosina Difosfato Ribose/metabolismo , Proteínas/metabolismo , Animais , Cromatina/genética , Epigênese Genética/genética , Comportamento Exploratório/fisiologia , Regulação da Expressão Gênica/fisiologia , Loci Gênicos/genética , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/fisiologia , Histonas/fisiologia , Masculino , Memória/fisiologia , Camundongos , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Poli(ADP-Ribose) Polimerase-1 , Poli Adenosina Difosfato Ribose/fisiologia , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/fisiologia , Regiões Promotoras Genéticas/genética , Proteínas/fisiologia , Transmissão Sináptica/genética
17.
In Vitro Cell Dev Biol Anim ; 57(6): 587-597, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34212340

RESUMO

Conventional methods for obtaining pancreatic ß cells are based on simulating the embryonic development phase of endocrine cells via hierarchical differentiation of pluripotent stem cells (PSCs). Accordingly, we attempted to modify the protocols for obtaining insulin-secreting cells (ISCs) by sequential differentiation of a human embryonic stem cell (hESC), using the HS181 cell line. Furthermore, we hypothesize that actual pancreatic endocrine cells may arise from trans-differentiation of mature ductal cells after the embryonic developmental stage and throughout the rest of life. According to the hypothesis, ductal cells are trans-differentiated into endocrine and exocrine cells, undergoing a partial epithelial to mesenchymal transition (EMT). To address this issue, we developed two new protocols based on hESC differentiation to obtain ductal cells and then induce EMT in cells to obtain hormone-secreting islet-like cells (HSCs). The ductal (pre-EMT exocrine) cells were then induced to undergo partial EMT by treating with Wnt3a and activin A, in hypoxia. The cell derived from the latter method significantly expressed the main endocrine cell-specific markers and also ß cells, in particular. These experiments not only support our hypothetical model but also offer a promising approach to develop new methods to compensate ß cell depletion in patients with type 1 diabetes mellitus (T1DM). Although this protocol of generating islet-like cells from ductal cells has a potential to treat T1DM, this strategy may be exploited to optimize the function of these cells in an animal model and future clinical applications.


Assuntos
Transdiferenciação Celular/genética , Diabetes Mellitus Tipo 1/terapia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Pluripotentes/citologia , Proteína Wnt3A/genética , Técnicas de Cultura de Células , Diferenciação Celular/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Células Endócrinas/citologia , Transição Epitelial-Mesenquimal/genética , Células-Tronco Embrionárias Humanas/transplante , Humanos , Insulina/genética , Insulina/metabolismo , Secreção de Insulina/genética , Células Secretoras de Insulina/patologia , Células Secretoras de Insulina/transplante , Pâncreas/crescimento & desenvolvimento , Pâncreas/patologia , Células-Tronco Pluripotentes/transplante
18.
Antioxidants (Basel) ; 10(9)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34573040

RESUMO

The optimization of conditions to promote the stemness of pluripotent cells in vitro is instrumental for their use in advanced therapies. We show here that exposure of human iPSCs and human ESCs to low concentrations of the chemical NO donor DETA/NO leads to stabilization of hypoxia-inducible factors (HIF-1α and HIF-2α) under normoxia, with this effect being dependent on diminished Pro 402 hydroxylation and decreased degradation by the proteasome. Moreover, the master genes of pluripotency, NANOG and OCT-4, were upregulated. NO also induces a shift in the metabolic profile of PSCs, with an increased expression of hypoxia response genes in glycolysis. Furthermore, a reduction in the mitochondrial membrane potential with lower oxygen consumption and increased expression of mitochondrial fusion regulators, such as DRP1, was observed. The results reported here indicate that NO mimics hypoxia response in human PSCs and enhances their stemness properties when cultured under normoxic conditions.

19.
Mol Ther Nucleic Acids ; 26: 401-416, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34552821

RESUMO

MicroRNAs (miRNAs) are promising drug targets for obesity and metabolic disorders. Recently, miRNA mimics are providing a unique mechanism of action that guides the process for drug development and sets out the context of their therapeutic application. miRNA (miR)-21 expression in white adipose tissue (WAT) has been associated with obesity. We aimed to analyze miR-21 expression levels in relation to diabetes and obesity to determine the effect that miR-21 mimic has on processes involved in WAT functionality, to dissect the underlying molecular mechanisms, and to study the potential therapeutic application of the miR-21 mimic against obesity. We found higher miR-21 levels in WAT from non-diabetic obese compared to normoweight humans and mice. Moreover, in 3T3-L1 adipocytes, miR-21 mimic affect genes involved in WAT functionality regulation and significantly increase the expression of genes involved in browning and thermogenesis. Interestingly, in vivo treatment with the miR-21 mimic blocked weight gain induced by a high-fat diet in obese mice, without modifying food intake or physical activity. This was associated with metabolic enhancement, WAT browning, and brown adipose tissue (AT) thermogenic programming through vascular endothelial growth factor A (VEGF-A), p53, and transforming growth factor ß1 (TGF-ß1) signaling pathways. Our findings suggest that miR-21 mimic-based therapy may provide a new opportunity to therapeutically manage obesity and consequently, its associated alterations.

20.
Sci Rep ; 11(1): 8250, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859314

RESUMO

Dietary fatty acids play a role in the pathogenesis of obesity-associated non-alcoholic fatty liver disease (NAFLD), which is associated with insulin resistance (IR). Fatty acid composition is critical for IR and subsequent NAFLD development. Extra-virgin olive oil (EVOO) is the main source of monounsaturated fatty acids (MUFA) in Mediterranean diets. This study examined whether EVOO-containing high fat diets may prevent diet-induced NAFLD using Ldlr-/-. Leiden mice. In female Ldlr-/-.Leiden mice, the effects of the following high fat diets (HFDs) were examined: a lard-based HFD (HFD-L); an EVOO-based HFD (HFD-EVOO); a phenolic compounds-rich EVOO HFD (HFD-OL). We studied changes in body weight (BW), lipid profile, transaminases, glucose homeostasis, liver pathology and transcriptome. Both EVOO diets reduced body weight (BW) and improved insulin sensitivity. The EVOOs did not improve transaminase values and increased LDL-cholesterol and liver collagen content. EVOOs and HFD-L groups had comparable liver steatosis. The profibrotic effects were substantiated by an up-regulation of gene transcripts related to glutathione metabolism, chemokine signaling and NF-kappa-B activation and down-regulation of genes relevant for fatty acid metabolism. Collectivelly, EVOO intake improved weight gain and insulin sensitivity but not liver inflammation and fibrosis, which was supported by changes in hepatic genes expression.


Assuntos
Peso Corporal/efeitos dos fármacos , Resistência à Insulina , Obesidade/dietoterapia , Azeite de Oliva/farmacologia , Receptores de LDL/genética , Animais , Dieta Hiperlipídica , Dieta Mediterrânea , Feminino , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Knockout , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA