Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 28(21): 6370-6384, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36054687

RESUMO

Peatlands drained for agriculture or forestry are susceptible to the rapid release of greenhouse gases (GHGs) through enhanced microbial decomposition and increased frequency of deep peat fires. We present evidence that rewetting drained subtropical wooded peatlands (STWPs) along the southeastern USA coast, primarily pocosin bogs, could prevent significant carbon (C) losses. To quantify GHG emissions and storage from drained and rewetted pocosin we used eddy covariance techniques, the first such estimates that have been applied to this major bog type, on a private drained (PD) site supplemented by static chamber measurements at PD and Pocosin Lakes National Wildlife Refuge. Net ecosystem exchange measurements showed that the loss was 21.2 Mg CO2  ha-1  year-1 (1 Mg = 106 g) in the drained pocosin. Under a rewetted scenario, where the annual mean water table depth (WTD) decreased from 60 to 30 cm, the C loss was projected to fall to 2 Mg CO2  ha-1  year-1 , a 94% reduction. If the WTD was 20 cm, the peatlands became a net carbon sink (-3.3 Mg CO2  ha-1  year-1 ). Hence, net C reductions could reach 24.5 Mg CO2  ha-1  year-1 , and when scaled up to the 4000 ha PD site nearly 100,000 Mg CO2  year-1 of creditable C could be amassed. We conservatively estimate among the 0.75 million ha of southeastern STWPs, between 450 and 770 km2 could be rewet, reducing annual GHG emissions by 0.96-1.6 Tg (1 Tg = 1012 g) of CO2 , through suppressed microbial decomposition and 1.7-2.8 Tg via fire prevention, respectively. Despite covering <0.01% of US land area, rewetting drained pocosin can potentially provide 2.4% of the annual CO2 nationwide reduction target of 0.18 Pg (1 Pg = 1015 g). Suggesting pocosin restoration can contribute disproportionately to the US goal of achieving net-zero emission by 2050.


Assuntos
Sequestro de Carbono , Gases de Efeito Estufa , Carbono , Dióxido de Carbono/análise , Ecossistema , Gases de Efeito Estufa/análise , Hidrologia , Metano/análise , Solo , Áreas Alagadas
2.
Environ Sci Technol ; 54(3): 1533-1544, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31951397

RESUMO

Reliable predictions of the environmental fate and risk of engineered nanomaterials (ENMs) require a better understanding of ENM reactivity in complex, biologically active systems for chronic low-concentration exposure scenarios. Here, simulated freshwater wetland mesocosms were dosed with ENMs to assess how their reactivity and seasonal changes in environmental parameters influence ENM fate in aquatic systems. Copper-based ENMs (Kocide), known to dissolve in water, and gold nanoparticles (AuNPs), stable against dissolution in the absence of specific ligands, were added weekly to mesocosm waters for 9 months. Metal accumulation and speciation changes in the different environmental compartments were assessed over time. Copper from Kocide rapidly dissolved likely associating with organic matter in the water column, transported to terrestrial soils and deeper sediment where it became associated with organic or sulfide phases. In contrast, Au accumulated on/in the macrophytes where it oxidized and transferred over time to surficial sediment. A dynamic seasonal accumulation and metal redox cycling were found between the macrophyte and the surficial sediment for AuNPs. These results demonstrate the need for experimental quantification of how the biological and chemical complexity of the environment, combined with their seasonal variations, drive the fate of metastable ENMs.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Cobre , Água Doce , Ouro , Estações do Ano , Áreas Alagadas
3.
Ecol Appl ; 28(6): 1435-1449, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29939451

RESUMO

Despite the rapid rise in diversity and quantities of engineered nanomaterials produced, the impacts of these emerging contaminants on the structure and function of ecosystems have received little attention from ecologists. Moreover, little is known about how manufactured nanomaterials may interact with nutrient pollution in altering ecosystem productivity, despite the recognition that eutrophication is the primary water quality issue in freshwater ecosystems worldwide. In this study, we asked two main questions: (1) To what extent do manufactured nanoparticles affect the biomass and productivity of primary producers in wetland ecosystems? (2) How are these impacts mediated by nutrient pollution? To address these questions, we examined the impacts of a citrate-coated gold nanoparticle (AuNPs) and of a commercial pesticide containing Cu(OH)2 nanoparticles (CuNPs) on aquatic primary producers under both ambient and enriched nutrient conditions. Wetland mesocosms were exposed repeatedly with low concentrations of nanoparticles and nutrients over the course of a 9-month experiment in an effort to replicate realistic field exposure scenarios. In the absence of nutrient enrichment, there were no persistent effects of AuNPs or CuNPs on primary producers or ecosystem productivity. However, when combined with nutrient enrichment, both NPs intensified eutrophication. When either of these NPs were added in combination with nutrients, algal blooms persisted for >50 d longer than in the nutrient-only treatment. In the AuNP treatment, this shift from clear waters to turbid waters led to large declines in both macrophyte growth and rates of ecosystem gross primary productivity (average reduction of 52% ± 6% and 92% ± 5%, respectively) during the summer. Our results suggest that nutrient status greatly influences the ecosystem-scale impact of two emerging contaminants and that synthetic chemicals may be playing an under-appreciated role in the global trends of increasing eutrophication. We provide evidence here that chronic exposure to Au and Cu(OH)2 nanoparticles at low concentrations can intensify eutrophication of wetlands and promote the occurrence of algal blooms.


Assuntos
Cobre/toxicidade , Eutrofização , Ouro/toxicidade , Hidróxidos/toxicidade , Nanopartículas/toxicidade , Áreas Alagadas , Hydrocharitaceae/crescimento & desenvolvimento , Oxigênio/metabolismo
4.
Environ Sci Technol ; 52(5): 2558-2565, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29381864

RESUMO

Silver nanoparticles (AgNPs) are increasingly used in consumer products, biotechnology, and medicine, and are released into aquatic ecosystems through wastewater discharge. This study investigated the phytotoxicity of AgNPs to aquatic plants, Egeria densa and Juncus effusus by measuring physiologic and enzymatic responses to AgNP exposure under three release scenarios: two chronic (8.7 mg, weekly) exposures to either zerovalent AgNPs or sulfidized silver nanoparticles; and a pulsed (450 mg, one-time) exposure to zerovalent AgNPs. Plant enzymatic and biochemical stress responses were assessed using superoxide dismutase (SOD) and peroxidase (POD) activity, malondialdehyde (MDA) concentrations and chlorophyll content as markers of defense and phytotoxicity, respectively. The high initial pulse treatment resulted in rapid changes in physiological characteristics and silver concentration in plant tissue at the beginning of each AgNPs exposure (6 h, 36 h, and 9 days), while continuous AgNP and sulfidized AgNP chronic treatments gave delayed responses. Both E. densa and J. effusus enhanced their tolerance to AgNPs toxicity by increasing POD and SOD activities to scavenge free radicals but at different growth phases. Chlorophyll did not change. After AgNPs exposure, MDA, an index of membrane damage, was higher in submerged E. densa than emergent J. effusus, which suggested that engineered nanoparticles exerted more stress to submerged macrophytes.


Assuntos
Nanopartículas Metálicas , Prata , Ecossistema , Malondialdeído , Superóxido Dismutase
5.
Ecol Appl ; 25(3): 753-67, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26214920

RESUMO

Climate change is predicted to impact river systems in the southeastern United States through alterations of temperature, patterns of precipitation and hydrology. Future climate scenarios for the southeastern United States predict (1) surface water temperatures will warm in concert with air temperature, (2) storm flows will increase and base flows will decrease, and (3) the annual pattern of synchronization between hydroperiod and water temperature will be altered. These alterations are expected to disturb floodplain plant communities, making them more vulnerable to establishment of invasive species. The primary objective of this study is to evaluate whether native and invasive riparian plant assemblages respond differently to alterations of climate and land use. To study the response of riparian wetlands to watershed and climate alterations, we utilized an existing natural experiment imbedded in gradients of temperature and hydrology-found among dammed and undammed rivers. We evaluated a suite of environmental variables related to water temperature, hydrology, watershed disturbance, and edaphic conditions to identify the strongest predictors of native and invasive species abundances. We found that native species abundance is strongly influenced by climate-driven variables such as temperature and hydrology, while invasive species abundance is more strongly influenced by site-specific factors such as land use and soil nutrient availability. The patterns of synchronization between plant phenology, annual hydrographs, and annual water temperature cycles may be key factors sustaining the viability of native riparian plant communities. Our results demonstrate the need to understand the interactions between climate, land use, and nutrient management in maintaining the species diversity of riparian plant communities. Future climate change is likely to result in diminished competitiveness of native plant species, while the competitiveness of invasive species will increase due to anthropogenic watershed disturbance and accelerated nutrient and sediment export.


Assuntos
Mudança Climática , Monitoramento Ambiental , Espécies Introduzidas , Plantas/classificação , Áreas Alagadas , Animais , Meio Ambiente , Temperatura
6.
Molecules ; 20(4): 6970-7, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25913934

RESUMO

Phytochemical investigation of the flowers of Acmella oleracea had resulted in the isolation of one new alkylamide, (2E,5Z)-N-isobutylundeca-2,5-diene-8,10-diynamide (1), together with four known analogues (2-5). The structures of these compounds were determined by the interpretation of spectroscopic methods, especially NMR technologies (COSY, HSQC, HMBC, and NOESY). In addition, a convenient method for concentrating the alkylamide-rich fraction and analyzing fingerprint profile of A. oleracea was established.


Assuntos
Amidas/química , Asteraceae/química , Extratos Vegetais/química , Flores/química , Estrutura Molecular
7.
Nat Commun ; 9(1): 3640, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194308

RESUMO

Peatlands represent large terrestrial carbon banks. Given that most peat accumulates in boreal regions, where low temperatures and water saturation preserve organic matter, the existence of peat in (sub)tropical regions remains enigmatic. Here we examined peat and plant chemistry across a latitudinal transect from the Arctic to the tropics. Near-surface low-latitude peat has lower carbohydrate and greater aromatic content than near-surface high-latitude peat, creating a reduced oxidation state and resulting recalcitrance. This recalcitrance allows peat to persist in the (sub)tropics despite warm temperatures. Because we observed similar declines in carbohydrate content with depth in high-latitude peat, our data explain recent field-scale deep peat warming experiments in which catotelm (deeper) peat remained stable despite temperature increases up to 9 °C. We suggest that high-latitude deep peat reservoirs may be stabilized in the face of climate change by their ultimately lower carbohydrate and higher aromatic composition, similar to tropical peats.

8.
Sci Total Environ ; 566-567: 621-626, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27236627

RESUMO

Over the past several decades there has been a massive increase in coastal eutrophication, which is often caused by increased runoff input of nitrogen from landscape alterations. Peatlands, covering 3% of land area, have stored about 12-21% of global soil organic nitrogen (12-20Pg N) around rivers, lakes and coasts over millennia and are now often drained and farmed. Their huge nitrogen pools may be released by intensified climate driven hydrologic events-prolonged droughts followed by heavy storms-and later transported to marine ecosystems. In this study, we collected peat monoliths from drained, natural, and restored coastal peatlands in the Southeastern U.S., and conducted a microcosm experiment simulating coupled prolonged-drought and storm events to (1) test whether storms could trigger a pulse of nitrogen export from drought-stressed peatlands and (2) assess how differentially hydrologic managements through shifting plant communities affect nitrogen export by combining an experiment of nitrogen release from litter. During the drought phase, we observed a significant temporal variation in net nitrogen mineralization rate (NMR). NMR spiked in the third month and then decreased rapidly. This pattern indicates that drought duration significantly affects nitrogen mineralization in peat. NMR in the drained site reached up to 490±110kgha(-1)year(-1), about 5 times higher than in the restored site. After the 14-month drought phase, we simulated a heavy storm by bringing peat monoliths to saturation. In the discharge waters, concentrations of total dissolved nitrogen in the monoliths from the drained site (72.7±16.3mgL(-1)) was about ten times as high as from the restored site. Our results indicate that previously drained peatlands under prolonged drought are a potent source of nitrogen export. Moreover, drought-induced plant community shifts to herbaceous plants substantially raise nitrogen release with lasting effects by altering litter quality in peatlands.


Assuntos
Ecossistema , Nitrogênio/análise , Movimentos da Água , Poluentes Químicos da Água/análise , Áreas Alagadas , Secas , Hidrologia , North Carolina , Chuva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA