Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 30(11): 2385-2390, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39322418

RESUMO

We studied a community cluster of 25 mpox cases in Vietnam caused by emerging monkeypox virus sublineage C.1 and imported into Vietnam through 2 independent events; 1 major cluster carried a novel APOBEC3-like mutation. Three patients died; all had advanced HIV co-infection. Viral evolution and its potential consequences should be closely monitored.


Assuntos
Monkeypox virus , Mpox , Filogenia , Vietnã/epidemiologia , Humanos , Mpox/epidemiologia , Mpox/virologia , Mpox/transmissão , Monkeypox virus/genética , Monkeypox virus/classificação , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Doenças Transmissíveis Emergentes/virologia , Doenças Transmissíveis Emergentes/transmissão , Doenças Transmissíveis Emergentes/epidemiologia , Infecções por HIV/transmissão , Infecções por HIV/virologia , Infecções por HIV/epidemiologia , História do Século XXI , Mutação , Coinfecção/virologia
2.
Sci Rep ; 14(1): 14798, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926427

RESUMO

Muscle ultrasound has been shown to be a valid and safe imaging modality to assess muscle wasting in critically ill patients in the intensive care unit (ICU). This typically involves manual delineation to measure the rectus femoris cross-sectional area (RFCSA), which is a subjective, time-consuming, and laborious task that requires significant expertise. We aimed to develop and evaluate an AI tool that performs automated recognition and measurement of RFCSA to support non-expert operators in measurement of the RFCSA using muscle ultrasound. Twenty patients were recruited between Feb 2023 and July 2023 and were randomized sequentially to operators using AI (n = 10) or non-AI (n = 10). Muscle loss during ICU stay was similar for both methods: 26 ± 15% for AI and 23 ± 11% for the non-AI, respectively (p = 0.13). In total 59 ultrasound examinations were carried out (30 without AI and 29 with AI). When assisted by our AI tool, the operators showed less variability between measurements with higher intraclass correlation coefficients (ICCs 0.999 95% CI 0.998-0.999 vs. 0.982 95% CI 0.962-0.993) and lower Bland Altman limits of agreement (± 1.9% vs. ± 6.6%) compared to not using the AI tool. The time spent on scans reduced significantly from a median of 19.6 min (IQR 16.9-21.7) to 9.4 min (IQR 7.2-11.7) compared to when using the AI tool (p < 0.001). AI-assisted muscle ultrasound removes the need for manual tracing, increases reproducibility and saves time. This system may aid monitoring muscle size in ICU patients assisting rehabilitation programmes.


Assuntos
Estado Terminal , Unidades de Terapia Intensiva , Atrofia Muscular , Ultrassonografia , Humanos , Masculino , Ultrassonografia/métodos , Feminino , Pessoa de Meia-Idade , Idoso , Atrofia Muscular/diagnóstico por imagem , Músculo Esquelético/diagnóstico por imagem , Músculo Quadríceps/diagnóstico por imagem , Inteligência Artificial , Adulto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA