Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 49(9): 5189-5201, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34009328

RESUMO

G-quadruplex (G4) DNA structures have emerged as important regulatory elements during DNA metabolic transactions. While many in vitro studies have focused on the kinetics of G4 formation within DNA single-strands, G4 are found in vivo in double-stranded DNA regions, where their formation is challenged by the complementary strand. Since the energy of hybridization of Watson-Crick structures dominates the energy of G4 folding, this competition should play a critical role on G4 persistence. To address this, we designed a single-molecule assay allowing to measure G4 folding and persistence times in the presence of the complementary strand. We quantified both folding and unfolding rates of biologically relevant G4 sequences, such as the cMYC and cKIT oncogene promoters, human telomeres and an avian replication origin. We confirmed that G4s are found much more stable in tested replication origin and promoters than in human telomere repeats. In addition, we characterized how G4 dynamics was affected by G4 ligands and showed that both folding rate and persistence time increased. Our assay opens new perspectives for the measurement of G4 dynamics in double-stranded DNA mimicking a replication fork, which is important to understand their role in DNA replication and gene regulation at a mechanistic level.


Assuntos
DNA/química , Quadruplex G , Animais , Galinhas/genética , Dimerização , Humanos , Ligantes , Oncogenes , Regiões Promotoras Genéticas , Sequências Repetitivas de Ácido Nucleico , Origem de Replicação , Telômero/química
2.
Nucleic Acids Res ; 46(16): 8500-8515, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30053104

RESUMO

Most RecQ DNA helicases share a conserved domain arrangement that mediates their activities in genomic stability. This arrangement comprises a helicase motor domain, a RecQ C-terminal (RecQ-C) region including a winged-helix (WH) domain, and a 'Helicase and RNase D C-terminal' (HRDC) domain. Single-molecule real-time translocation and DNA unwinding by full-length Escherichia coli RecQ and variants lacking either the HRDC or both the WH and HRDC domains was analyzed. RecQ operated under two interconvertible kinetic modes, 'slow' and 'normal', as it unwound duplex DNA and translocated on single-stranded (ss) DNA. Consistent with a crystal structure of bacterial RecQ bound to ssDNA by base stacking, abasic sites blocked RecQ unwinding. Removal of the HRDC domain eliminates the slow mode while preserving the normal mode of activity. Unexpectedly, a RecQ variant lacking both the WH and HRDC domains retains weak helicase activity. The inclusion of E. coli ssDNA-binding protein (SSB) induces a third 'fast' unwinding mode four times faster than the normal RecQ mode and enhances the overall helicase activity (affinity, rate, and processivity). SSB stimulation was, furthermore, observed in the RecQ deletion variants, including the variant missing the WH domain. Our results support a model in which RecQ and SSB have multiple interacting modes.


Assuntos
DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/fisiologia , Proteínas de Escherichia coli/fisiologia , Escherichia coli/enzimologia , RecQ Helicases/fisiologia , Deleção de Genes , Sequências Repetidas Invertidas , Cinética , Modelos Moleculares , Pinças Ópticas , Conformação Proteica , Domínios Proteicos , RecQ Helicases/genética , Imagem Individual de Molécula
3.
Methods ; 105: 3-15, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27371121

RESUMO

Helicases are a broad family of enzymes that perform crucial functions in DNA replication and in the maintenance of DNA and RNA integrity. A detailed mechanical study of helicases on DNA and RNA is possible using single molecule manipulation methods. Among those, magnetic tweezers (or traps) present a convenient, moderate throughput assay (tens of enzymes can be monitored simultaneously) that allow for high resolution (single base-pair) studies of these enzymes in various conditions and on various substrates (double and single stranded DNA and RNA). Here we discuss various implementation of the basic assay relevant for these studies.


Assuntos
DNA Helicases/química , DNA Cruciforme/química , Magnetismo/métodos , Pinças Ópticas , DNA/química , DNA/genética , DNA Helicases/genética , Replicação do DNA/genética , DNA Cruciforme/genética , RNA/química , RNA/genética , Imagem Individual de Molécula/métodos
4.
Methods Mol Biol ; 2281: 93-115, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33847954

RESUMO

The ability of magnetic tweezers to apply forces and measure molecular displacements has resulted in its extensive use to study the activity of enzymes involved in various aspects of nucleic acid metabolism. These studies have led to the discovery of key aspects of protein-protein and protein-nucleic acid interaction, uncovering dynamic heterogeneities that are lost to ensemble averaging in bulk experiments. The versatility of magnetic tweezers lies in the possibility and ease of tracking multiple parallel single-molecule events to yield statistically relevant single-molecule data. Moreover, they allow tracking both fast millisecond dynamics and slow processes (spanning several hours). In this chapter, we present the protocols used to study the interaction between E. coli SSB, single-stranded DNA (ssDNA), and E. coli RecQ helicase using magnetic tweezers. In particular, we propose constant force and force modulation assays to investigate SSB binding to DNA, as well as to characterize various facets of RecQ helicase activity stimulation by SSB.


Assuntos
DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , RecQ Helicases/metabolismo , Imagem Individual de Molécula/instrumentação , Proteínas de Ligação a DNA/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Fenômenos Magnéticos , Ligação Proteica , Fatores de Tempo
5.
Protein Sci ; 26(7): 1314-1336, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28474797

RESUMO

Helicases are a broad family of enzymes that separate nucleic acid double strand structures (DNA/DNA, DNA/RNA, or RNA/RNA) and thus are essential to DNA replication and the maintenance of nucleic acid integrity. We review the picture that has emerged from single molecule studies of the mechanisms of DNA and RNA helicases and their interactions with other proteins. Many features have been uncovered by these studies that were obscured by bulk studies, such as DNA strands switching, mechanical (rather than biochemical) coupling between helicases and polymerases, helicase-induced re-hybridization and stalled fork rescue.


Assuntos
DNA Helicases , Replicação do DNA/fisiologia , DNA , Ácidos Nucleicos Heteroduplexes , RNA Helicases , RNA de Cadeia Dupla , DNA/química , DNA/metabolismo , DNA Helicases/química , DNA Helicases/metabolismo , Ácidos Nucleicos Heteroduplexes/química , Ácidos Nucleicos Heteroduplexes/metabolismo , RNA Helicases/química , RNA Helicases/metabolismo , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA