Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nucleic Acids Res ; 44(13): 6087-101, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27298255

RESUMO

Sexual differentiation of malaria parasites into gametocytes in the vertebrate host and subsequent gamete fertilization in mosquitoes is essential for the spreading of the disease. The molecular processes orchestrating these transitions are far from fully understood. Here, we report the first transcriptome analysis of male and female Plasmodium falciparum gametocytes coupled with a comprehensive proteome analysis. In male gametocytes there is an enrichment of proteins involved in the formation of flagellated gametes; proteins involved in DNA replication, chromatin organization and axoneme formation. On the other hand, female gametocytes are enriched in proteins required for zygote formation and functions after fertilization; protein-, lipid- and energy-metabolism. Integration of transcriptome and proteome data revealed 512 highly expressed maternal transcripts without corresponding protein expression indicating large scale translational repression in P. falciparum female gametocytes for the first time. Despite a high degree of conservation between Plasmodium species, 260 of these 'repressed transcripts' have not been previously described. Moreover, for some of these genes, protein expression is only reported in oocysts and sporozoites indicating that repressed transcripts can be partitioned into short- and long-term storage. Finally, these data sets provide an essential resource for identification of vaccine/drug targets and for further mechanistic studies.


Assuntos
Malária Falciparum/genética , Plasmodium falciparum/genética , Proteoma/genética , Transcriptoma/genética , Cromatina/genética , Replicação do DNA/genética , Feminino , Gametogênese/genética , Regulação da Expressão Gênica/genética , Humanos , Malária Falciparum/parasitologia , Masculino , Redes e Vias Metabólicas/genética , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/patogenicidade , Biossíntese de Proteínas , Caracteres Sexuais
2.
BMC Biol ; 12: 86, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25359557

RESUMO

BACKGROUND: Rodent malaria parasites (RMP) are used extensively as models of human malaria. Draft RMP genomes have been published for Plasmodium yoelii, P. berghei ANKA (PbA) and P. chabaudi AS (PcAS). Although availability of these genomes made a significant impact on recent malaria research, these genomes were highly fragmented and were annotated with little manual curation. The fragmented nature of the genomes has hampered genome wide analysis of Plasmodium gene regulation and function. RESULTS: We have greatly improved the genome assemblies of PbA and PcAS, newly sequenced the virulent parasite P. yoelii YM genome, sequenced additional RMP isolates/lines and have characterized genotypic diversity within RMP species. We have produced RNA-seq data and utilised it to improve gene-model prediction and to provide quantitative, genome-wide, data on gene expression. Comparison of the RMP genomes with the genome of the human malaria parasite P. falciparum and RNA-seq mapping permitted gene annotation at base-pair resolution. Full-length chromosomal annotation permitted a comprehensive classification of all subtelomeric multigene families including the 'Plasmodium interspersed repeat genes' (pir). Phylogenetic classification of the pir family, combined with pir expression patterns, indicates functional diversification within this family. CONCLUSIONS: Complete RMP genomes, RNA-seq and genotypic diversity data are excellent and important resources for gene-function and post-genomic analyses and to better interrogate Plasmodium biology. Genotypic diversity between P. chabaudi isolates makes this species an excellent parasite to study genotype-phenotype relationships. The improved classification of multigene families will enhance studies on the role of (variant) exported proteins in virulence and immune evasion/modulation.


Assuntos
Expressão Gênica , Genoma de Protozoário , Plasmodium falciparum/genética , Plasmodium/classificação , Sequência de Bases , Mapeamento Cromossômico , Regulação da Expressão Gênica , Genótipo , Dados de Sequência Molecular , Família Multigênica , Plasmodium/genética , Plasmodium falciparum/classificação , RNA de Protozoário/genética , Análise de Sequência de RNA , Transcriptoma/genética
3.
Mol Microbiol ; 87(5): 1061-73, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23320541

RESUMO

Histone variants are key components of the epigenetic code and evolved to perform specific functions in transcriptional regulation, DNA repair, chromosome segregation and other fundamental processes. Although variants for histone H2A and H3 are found throughout the eukaryotic kingdom, variants of histone H2B and H4 are rarely encountered. H2B.Z is one of those rare H2B variants and is apicomplexan-specific. Here we show that in Plasmodium falciparum H2B.Z localizes to euchromatic intergenic regions throughout intraerythrocytic development and together with H2A.Z forms a double-variant nucleosome subtype. These nucleosomes are enriched in promoters over 3' intergenic regions and their occupancy generally correlates with the strength of the promoter, but not with its temporal activity. Remarkably, H2B.Z occupancy levels exhibit a clear correlation with the base-composition of the underlying DNA, raising the intriguing possibility that the extreme AT content of the intergenic regions within the Plasmodium genome might be instructive for histone variant deposition. In summary, our data show that the H2A.Z/H2B.Z double-variant nucleosome demarcates putative regulatory regions of the P. falciparum epigenome and likely provides a scaffold for dynamic regulation of gene expression in this deadly human pathogen.


Assuntos
Sequência Rica em At , Genoma de Protozoário , Histonas/metabolismo , Nucleossomos/genética , Plasmodium falciparum/genética , Regiões Promotoras Genéticas , Proteínas de Protozoários/metabolismo , Sequência de Bases , DNA Intergênico , Histonas/genética , Humanos , Malária Falciparum/parasitologia , Dados de Sequência Molecular , Nucleossomos/metabolismo , Plasmodium falciparum/metabolismo , Transporte Proteico , Proteínas de Protozoários/genética
4.
Cell Microbiol ; 14(9): 1391-401, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22507744

RESUMO

Centromeres are essential for the faithful transmission of chromosomes to the next generation, therefore being essential in all eukaryotic organisms. The centromeres of Plasmodium falciparum, the causative agent of the most severe form of malaria, have been broadly mapped on most chromosomes, but their epigenetic composition remained undefined. Here, we reveal that the centromeric histone variant PfCENH3 occupies a 4-4.5 kb region on each P. falciparum chromosome, which is devoid of pericentric heterochromatin but harbours another histone variant, PfH2A.Z. These CENH3 covered regions pinpoint the exact position of the centromere on all chromosomes and revealed that all centromeric regions have similar size and sequence composition. Immunofluorescence assay of PfCENH3 strongly suggests that P. falciparum centromeres cluster to a single nuclear location prior to and during mitosis and cytokinesis but dissociate soon after invasion. In summary, we reveal a dynamic association of Plasmodium centromeres, which bear a unique epigenetic signature and conform to a strict structure. These findings suggest that DNA-associated and epigenetic elements play an important role in centromere establishment in this important human pathogen.


Assuntos
Centrômero/metabolismo , Epigênese Genética , Regulação da Expressão Gênica , Histonas/metabolismo , Plasmodium falciparum/fisiologia , Citocinese , DNA de Protozoário/química , DNA de Protozoário/genética , Microscopia de Fluorescência , Plasmodium falciparum/genética , Proteínas de Protozoários/metabolismo , Análise de Sequência de DNA
5.
PLoS Pathog ; 6(12): e1001223, 2010 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-21187892

RESUMO

Epigenetic regulatory mechanisms and their enzymes are promising targets for malaria therapeutic intervention; however, the epigenetic component of gene expression in P. falciparum is poorly understood. Dynamic or stable association of epigenetic marks with genomic features provides important clues about their function and helps to understand how histone variants/modifications are used for indexing the Plasmodium epigenome. We describe a novel, linear amplification method for next-generation sequencing (NGS) that allows unbiased analysis of the extremely AT-rich Plasmodium genome. We used this method for high resolution, genome-wide analysis of a histone H2A variant, H2A.Z and two histone H3 marks throughout parasite intraerythrocytic development. Unlike in other organisms, H2A.Z is a constant, ubiquitous feature of euchromatic intergenic regions throughout the intraerythrocytic cycle. The almost perfect colocalisation of H2A.Z with H3K9ac and H3K4me3 suggests that these marks are preferentially deposited on H2A.Z-containing nucleosomes. By performing RNA-seq on 8 time-points, we show that acetylation of H3K9 at promoter regions correlates very well with the transcriptional status whereas H3K4me3 appears to have stage-specific regulation, being low at early stages, peaking at trophozoite stage, but does not closely follow changes in gene expression. Our improved NGS library preparation procedure provides a foundation to exploit the malaria epigenome in detail. Furthermore, our findings place H2A.Z at the cradle of P. falciparum epigenetic regulation by stably defining intergenic regions and providing a platform for dynamic assembly of epigenetic and other transcription related complexes.


Assuntos
DNA Intergênico , Epigenômica , Genoma de Protozoário , Histonas/genética , Plasmodium falciparum/genética , Acetilação , Eritrócitos/parasitologia , Variação Genética , Humanos , Metilação , Plasmodium falciparum/crescimento & desenvolvimento , Análise de Sequência de DNA/métodos
6.
Mol Cell Biol ; 26(3): 843-51, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16428440

RESUMO

The human genome contains a number of methyl CpG binding proteins that translate DNA methylation into a physiological response. To gain insight into the function of MBD2 and MBD3, we first applied protein tagging and mass spectrometry. We show that MBD2 and MBD3 assemble into mutually exclusive distinct Mi-2/NuRD-like complexes, called MBD2/NuRD and MBD3/NuRD. We identified DOC-1, a putative tumor suppressor, as a novel core subunit of MBD2/NuRD as well as MBD3/NuRD. PRMT5 and its cofactor MEP50 were identified as specific MBD2/NuRD interactors. PRMT5 stably and specifically associates with and methylates the RG-rich N terminus of MBD2. Chromatin immunoprecipitation experiments revealed that PRMT5 and MBD2 are recruited to CpG islands in a methylation-dependent manner in vivo and that H4R3, a substrate of PRMT, is methylated at these loci. Our data show that MBD2/NuRD and MBD3/NuRD are distinct protein complexes with different biochemical and functional properties.


Assuntos
Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Histona Desacetilases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Bases , Células Cultivadas , Cromatina/metabolismo , Citocinas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Dados de Sequência Molecular , Proteínas Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases , Proteínas Supressoras de Tumor
7.
Methods Mol Biol ; 923: 221-39, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22990781

RESUMO

Transcriptome analysis by next-generation sequencing (RNA-seq) allows investigation of a transcriptome at unsurpassed resolution. One major benefit is that RNA-seq is independent of a priori knowledge on the sequence under investigation, thereby also allowing analysis of poorly characterized Plasmodium species. Here we provide a detailed protocol for RNA isolation and fragmentation, ribosomal RNA depletion, and cDNA synthesis that enables the preparation of a sequencing library from 1 to 2 µg of total RNA. Although we focus our discussion on the quantitative measurement of gene expression, this protocol is suited for many applications of RNA-seq and allows analysis of most RNA species.


Assuntos
Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Plasmodium/genética , Análise de Sequência de RNA/métodos , Transcriptoma , Biblioteca Gênica , Humanos , RNA de Protozoário/química , RNA de Protozoário/genética , RNA de Protozoário/isolamento & purificação
8.
Trends Parasitol ; 28(11): 486-95, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22999479

RESUMO

It is becoming increasingly evident that epigenetic mechanisms that act on and regulate chromatin structure play a key role in the development, adaptation, and survival of the malaria parasite within its human host. The study of epigenetics in Plasmodium falciparum started to flourish in recent years due to improvement of genomic technologies. Here we summarize the knowledge gained from genome-wide localization profiling of different epigenetic features, and discuss hypotheses emerging from the analysis of these 'descriptive' epigenetic maps. Furthermore, we highlight key questions to be answered, and provide a glimpse of developments required to gain true mechanistic understanding and to lift this maturing field to the next level.


Assuntos
Epigenômica , Genoma de Protozoário/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Humanos
9.
Nat Protoc ; 6(7): 1026-36, 2011 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-21720315

RESUMO

Linear amplification for deep sequencing (LADS) is an amplification method that produces representative libraries for Illumina next-generation sequencing within 2 d. The method relies on attaching two different sequencing adapters to blunt-end repaired and A-tailed DNA fragments, wherein one of the adapters is extended with the sequence for the T7 RNA polymerase promoter. Ligated and size-selected DNA fragments are transcribed in vitro with high RNA yields. Subsequent cDNA synthesis is initiated from a primer complementary to the first adapter, ensuring that the library will only contain full-length fragments with two distinct adapters. Contrary to the severely biased representation of AT- or GC-rich fragments in standard PCR-amplified libraries, the sequence coverage in T7-amplified libraries is indistinguishable from that of nonamplified libraries. Moreover, in contrast to amplification-free methods, LADS can generate sequencing libraries from a few nanograms of DNA, which is essential for all applications in which the starting material is limited.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mycobacterium tuberculosis/genética , Plasmodium falciparum/genética , Análise de Sequência de DNA/métodos , Composição de Bases , Sequência de Bases , DNA/química , Primers do DNA , RNA Polimerases Dirigidas por DNA/genética , Biblioteca Gênica , Genoma de Protozoário , Regiões Promotoras Genéticas , Proteínas Virais/genética
10.
Int J Biochem Cell Biol ; 42(6): 781-4, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20303414

RESUMO

The epigenetic contribution to the regulation and maintenance of gene expression patterns by histone modifications is well established in eukaryotes. In Plasmodium falciparum, the mechanisms and factors regulating gene expression during progression through its infected red blood cell cycle (iRBC) and underlying mutually exclusive expression of antigenic variation genes involved in immune evasion are far from understood. Recently, the first comprehensive analyses of the P. falciparum chromatin landscape at different iRBC stages have been performed. These studies uncovered the existence of well-defined heterochromatic regions within a generally euchromatic epigenome. Notably, silencing of genes encoding for virulence determinants such as var genes, appears to be orchestrated by the concerted action of the Sir2 and HP1 orthologs and the presence of the histone mark, H3K9me3. Epigenetic speciation could make the parasite exquisitely vulnerable to epigenetic drug treatment, unless this deadly parasite still has a number of tricks up his sleeves.


Assuntos
Epigênese Genética , Malária/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/metabolismo , Virulência , Animais , Montagem e Desmontagem da Cromatina , Eritrócitos/parasitologia , Eritrócitos/patologia , Regulação da Expressão Gênica , Histonas/genética , Humanos , Evasão da Resposta Imune , Malária/imunologia , Malária/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia
11.
Nat Cell Biol ; 11(8): 973-9, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19597488

RESUMO

Cellular senescence suppresses cancer by stably arresting the proliferation of damaged cells. Paradoxically, senescent cells also secrete factors that alter tissue microenvironments. The pathways regulating this secretion are unknown. We show that damaged human cells develop persistent chromatin lesions bearing hallmarks of DNA double-strand breaks (DSBs), which initiate increased secretion of inflammatory cytokines such as interleukin-6 (IL-6). Cytokine secretion occurred only after establishment of persistent DNA damage signalling, usually associated with senescence, not after transient DNA damage responses (DDRs). Initiation and maintenance of this cytokine response required the DDR proteins ATM, NBS1 and CHK2, but not the cell-cycle arrest enforcers p53 and pRb. ATM was also essential for IL-6 secretion during oncogene-induced senescence and by damaged cells that bypass senescence. Furthermore, DDR activity and IL-6 were elevated in human cancers, and ATM-depletion suppressed the ability of senescent cells to stimulate IL-6-dependent cancer cell invasiveness. Thus, in addition to orchestrating cell-cycle checkpoints and DNA repair, a new and important role of the DDR is to allow damaged cells to communicate their compromised state to the surrounding tissue.


Assuntos
Senescência Celular/fisiologia , Citocinas/metabolismo , Dano ao DNA , Transdução de Sinais/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia , Western Blotting , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Células Cultivadas , Quinase do Ponto de Checagem 2 , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ensaio de Imunoadsorção Enzimática , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Interleucina-6/metabolismo , Masculino , Microscopia de Fluorescência , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Transfecção , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA