Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-23722832

RESUMO

Keap1 is a substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex and plays an important role in the cellular response to oxidative stress. It binds Nrf2 with its Kelch domain and thus triggers the ubiquitinylation and degradation of Nrf2. Oxidative stress prevents the degradation of Nrf2 and leads to the activation of cytoprotective genes. Therefore, Keap1 is an attractive drug target in inflammatory diseases. The support of a medicinal chemistry effort by structural research requires a robust crystallization system in which the crystals are preferably suited for performing soaking experiments. This facilitates the generation of protein-ligand complexes in a routine and high-throughput manner. The structure of human Keap1 has been described previously. In this crystal form, however, the binding site for Nrf2 was blocked by a crystal contact. This interaction was analysed and mutations were introduced to disrupt this crystal contact. One double mutation (E540A/E542A) crystallized in a new crystal form in which the binding site for Nrf2 was not blocked and was accessible to small-molecule ligands. The crystal structures of the apo form of the mutated Keap1 Kelch domain (1.98 Å resolution) and of the complex with an Nrf2-derived peptide obtained by soaking (2.20 Å resolution) are reported.


Assuntos
Proteínas de Transporte/química , Engenharia Química/métodos , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cristalização , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Ligantes , Fator 2 Relacionado a NF-E2/química , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estrutura Secundária de Proteína/genética , Estrutura Terciária de Proteína/genética
2.
Protein Expr Purif ; 82(2): 308-16, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22342679

RESUMO

High amounts of membrane protein samples are needed for structural or functional analysis and a first bottleneck is often to obtain sufficient production efficiencies. The reduced complexity of protein production in cell-free expression systems results in a frequent correlation of efficiency problems with the essential transcription/translation process. We present a systematic tag variation strategy for the rapid improvement of cell-free expression efficiencies of membrane proteins based on the optimization of translation initiation. A small number of rationally designed short expression tags is attached via overlap PCR to the 5-prime end of the target protein coding sequence. The generated pool of DNA templates is analyzed in a cell-free expression screen and the most efficient template is selected for further preparative scale protein production. The expression tags can be minimized to only a few codons and no further impact on the coding sequence is required. The complete process takes only few days and the synthesized PCR fragments can be used directly as templates for preparative scale cell-free reactions. The strategy is exemplified with the production of a set of G-protein coupled receptors and yield improvements of up to 32-fold were obtained. All proteins were finally synthesized in amounts sufficient for further quality optimization and initial crystallization screens.


Assuntos
Expressão Gênica , Receptores Acoplados a Proteínas G/biossíntese , Proteínas Recombinantes de Fusão/biossíntese , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência de Bases , Cromatografia de Afinidade , Códon , Escherichia coli , Plasmídeos/genética , Receptores Acoplados a Proteínas G/isolamento & purificação , Proteínas Recombinantes de Fusão/isolamento & purificação , Frações Subcelulares
3.
ChemMedChem ; 16(4): 630-639, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33030297

RESUMO

Drugs targeting type 4 dipeptidyl peptidase (DPP-4) are beneficial for glycemic control, whereas fibroblast activation protein alpha (FAP-α) is a potential target for cancer therapies. Unlike other gliptins, linagliptin displays FAP inhibition. We compared biophysical and structural characteristics of linagliptin binding to DPP-4 and FAP to better understand what differentiates linagliptin from other gliptins. Linagliptin exhibited high binding affinity (KD ) and a slow off-rate (koff ) when dissociating from DPP-4 (KD 6.6 pM; koff 5.1×10-5  s-1 ), and weaker inhibitory potency to FAP (KD 301 nM; koff >1 s-1 ). Co-structures of linagliptin with DPP-4 or FAP were similar except for one second shell amino acid difference: Asp663 (DPP-4) and Ala657 (FAP). pH dependence of enzymatic activities and binding of linagliptin for DPP-4 and FAP are dependent on this single amino acid difference. While linagliptin may not display any anticancer activity at therapeutic doses, our findings may guide future studies for the development of optimized inhibitors.


Assuntos
Aminoácidos/análise , Dipeptidil Peptidase 4/metabolismo , Linagliptina/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Sítios de Ligação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Endopeptidases/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Cinética , Linagliptina/química , Proteínas de Membrana/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade
4.
J Med Chem ; 59(16): 7466-77, 2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27438064

RESUMO

The binding kinetics and thermodynamics of dipeptidyl peptidase (DPP)-4 inhibitors (gliptins) were investigated using surface plasmon resonance and isothermal titration calorimetry. Binding of gliptins to DPP-4 is a rapid electrostatically driven process. Off-rates were generally slow partly because of reversible covalent bond formation by some gliptins, and partly because of strong and extensive interactions. Binding of all gliptins is enthalpy-dominated due to strong ionic interactions and strong solvent-shielded hydrogen bonds. Using a congeneric series of molecules which represented the intermediates in the lead optimization program of linagliptin, the onset of slow binding kinetics and development of the thermodynamic repertoire were analyzed in the context of incremental changes of the chemical structures. All compounds rapidly associated, and therefore the optimization of affinity and residence time is highly correlated. The major contributor to the increasing free energy of binding was a strong increase of binding enthalpy, whereas entropic contributions remained low and constant despite significant addition of lipophilicity.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Termodinâmica , Sítios de Ligação , Inibidores da Dipeptidil Peptidase IV/química , Relação Dose-Resposta a Droga , Humanos , Cinética , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA