Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Sci ; 31(1): 38, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38627765

RESUMO

BACKGROUND: Mitochondria are essential organelles involved in cellular energy production. Changes in mitochondrial function can lead to dysfunction and cell death in aging and age-related disorders. Recent research suggests that mitochondrial dysfunction is closely linked to neurodegenerative diseases. Glucagon-like peptide-1 receptor (GLP-1R) agonist has gained interest as a potential treatment for Parkinson's disease (PD). However, the exact mechanisms responsible for the therapeutic effects of GLP-1R-related agonists are not yet fully understood. METHODS: In this study, we explores the effects of early treatment with PT320, a sustained release formulation of the GLP-1R agonist Exenatide, on mitochondrial functions and morphology in a progressive PD mouse model, the MitoPark (MP) mouse. RESULTS: Our findings demonstrate that administration of a clinically translatable dose of PT320 ameliorates the reduction in tyrosine hydroxylase expression, lowers reactive oxygen species (ROS) levels, and inhibits mitochondrial cytochrome c release during nigrostriatal dopaminergic denervation in MP mice. PT320 treatment significantly preserved mitochondrial function and morphology but did not influence the reduction in mitochondria numbers during PD progression in MP mice. Genetic analysis indicated that the cytoprotective effect of PT320 is attributed to a reduction in the expression of mitochondrial fission protein 1 (Fis1) and an increase in the expression of optic atrophy type 1 (Opa1), which is known to play a role in maintaining mitochondrial homeostasis and decreasing cytochrome c release through remodeling of the cristae. CONCLUSION: Our findings suggest that the early administration of PT320 shows potential as a neuroprotective treatment for PD, as it can preserve mitochondrial function. Through enhancing mitochondrial health by regulating Opa1 and Fis1, PT320 presents a new neuroprotective therapy in PD.


Assuntos
Citocromos c , Exenatida , Agonistas do Receptor do Peptídeo 1 Semelhante ao Glucagon , Doenças Mitocondriais , Citocromos c/uso terapêutico , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/metabolismo , Exenatida/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Modelos Animais de Doenças
2.
J Biomed Sci ; 30(1): 16, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36872339

RESUMO

BACKGROUND: Quelling microglial-induced excessive neuroinflammation is a potential treatment strategy across neurological disorders, including traumatic brain injury (TBI), and can be achieved by thalidomide-like drugs albeit this approved drug class is compromised by potential teratogenicity. Tetrafluorobornylphthalimide (TFBP) and tetrafluoronorbornylphthalimide (TFNBP) were generated to retain the core phthalimide structure of thalidomide immunomodulatory imide drug (IMiD) class. However, the classical glutarimide ring was replaced by a bridged ring structure. TFBP/TFNBP were hence designed to retain beneficial anti-inflammatory properties of IMiDs but, importantly, hinder cereblon binding that underlies the adverse action of thalidomide-like drugs. METHODS: TFBP/TFNBP were synthesized and evaluated for cereblon binding and anti-inflammatory actions in human and rodent cell cultures. Teratogenic potential was assessed in chicken embryos, and in vivo anti-inflammatory actions in rodents challenged with either lipopolysaccharide (LPS) or controlled cortical impact (CCI) moderate traumatic brain injury (TBI). Molecular modeling was performed to provide insight into drug/cereblon binding interactions. RESULTS: TFBP/TFNBP reduced markers of inflammation in mouse macrophage-like RAW264.7 cell cultures and in rodents challenged with LPS, lowering proinflammatory cytokines. Binding studies demonstrated minimal interaction with cereblon, with no resulting degradation of teratogenicity-associated transcription factor SALL4 or of teratogenicity in chicken embryo assays. To evaluate the biological relevance of its anti-inflammatory actions, two doses of TFBP were administered to mice at 1 and 24 h post-injury following CCI TBI. Compared to vehicle treatment, TFBP reduced TBI lesion size together with TBI-induction of an activated microglial phenotype, as evaluated by immunohistochemistry 2-weeks post-injury. Behavioral evaluations at 1- and 2-weeks post-injury demonstrated TFBP provided more rapid recovery of TBI-induced motor coordination and balance impairments, versus vehicle treated mice. CONCLUSION: TFBP and TFNBP represent a new class of thalidomide-like IMiDs that lower proinflammatory cytokine generation but lack binding to cereblon, the main teratogenicity-associated mechanism. This aspect makes TFBP and TFNBP potentially safer than classic IMiDs for clinical use. TFBP provides a strategy to mitigate excessive neuroinflammation associated with moderate severity TBI to, thereby, improve behavioral outcome measures and warrants further investigation in neurological disorders involving a neuroinflammatory component.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Embrião de Galinha , Humanos , Animais , Camundongos , Talidomida , Doenças Neuroinflamatórias , Agentes de Imunomodulação , Lipopolissacarídeos , Inflamação
3.
Mol Cell Biochem ; 478(11): 2567-2580, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36884151

RESUMO

Breast cancer brain metastasis (BCBM) has an incidence of 10-30%. It is incurable and the biological mechanisms that promote its progression remain largely undefined. Consequently, to gain insights into BCBM processes, we have developed a spontaneous mouse model of BCBM and in this study found a 20% penetrance of macro-metastatic brain lesion formation. Considering that lipid metabolism is indispensable to metastatic progression, our goal was the mapping of lipid distributions throughout the metastatic regions of the brain. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) of lipids revealed that, relative to surrounding brain tissue, seven long-chain (13-21 carbons long) fatty acylcarnitines, as well as two phosphatidylcholines, two phosphatidylinositols two diacylglycerols, a long-chain phosphatidylethanolamine, and a long-chain sphingomyelin were highly concentrated in the metastatic brain lesion In broad terms, lipids known to be enriched in brain tissues, such as very long-chain (≥ 22 carbons in length) polyunsaturated fatty acid of phosphatidylcholines, phosphatidylethanolamine, sphingomyelins, sulfatides, phosphatidylinositol phosphates, and galactosylceramides, were not found or only found in trace amounts in the metastatic lesion and instead consistently detected in surrounding brain tissues. The data, from this mouse model, highlights an accumulation of fatty acylcarnitines as possible biological makers of a chaotic inefficient vasculature within the metastasis, resulting in relatively inadequate blood flow and disruption of fatty acid ß-oxidation due to ischemia/hypoxia.

4.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902115

RESUMO

To determine the efficacy of PT320 on L-DOPA-induced dyskinetic behaviors, and neurochemistry in a progressive Parkinson's disease (PD) MitoPark mouse model. To investigate the effects of PT320 on the manifestation of dyskinesia in L-DOPA-primed mice, a clinically translatable biweekly PT320 dose was administered starting at either 5 or 17-weeks-old mice. The early treatment group was given L-DOPA starting at 20 weeks of age and longitudinally evaluated up to 22 weeks. The late treatment group was given L-DOPA starting at 28 weeks of age and longitudinally observed up to 29 weeks. To explore dopaminergic transmission, fast scan cyclic voltammetry (FSCV) was utilized to measure presynaptic dopamine (DA) dynamics in striatal slices following drug treatments. Early administration of PT320 significantly mitigated the severity L-DOPA-induced abnormal involuntary movements; PT320 particularly improved excessive numbers of standing as well as abnormal paw movements, while it did not affect L-DOPA-induced locomotor hyperactivity. In contrast, late administration of PT320 did not attenuate any L-DOPA-induced dyskinesia measurements. Moreover, early treatment with PT320 was shown to not only increase tonic and phasic release of DA in striatal slices in L-DOPA-naïve MitoPark mice, but also in L-DOPA-primed animals. Early treatment with PT320 ameliorated L-DOPA-induced dyskinesia in MitoPark mice, which may be related to the progressive level of DA denervation in PD.


Assuntos
Antiparkinsonianos , Discinesia Induzida por Medicamentos , Receptor do Peptídeo Semelhante ao Glucagon 1 , Levodopa , Doença de Parkinson , Animais , Camundongos , Antiparkinsonianos/efeitos adversos , Antiparkinsonianos/uso terapêutico , Preparações de Ação Retardada/uso terapêutico , Modelos Animais de Doenças , Dopamina/efeitos adversos , Dopamina/uso terapêutico , Discinesia Induzida por Medicamentos/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Levodopa/efeitos adversos , Levodopa/uso terapêutico , Oxidopamina , Doença de Parkinson/tratamento farmacológico
5.
Mol Psychiatry ; 26(11): 6451-6468, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33931731

RESUMO

Glucoregulatory efficiency and ATP production are key regulators for neuronal plasticity and memory formation. Besides its chemotactic and neuroinflammatory functions, the CC chemokine--CCL5 displays neurotrophic activity. We found impaired learning-memory and cognition in CCL5-knockout mice at 4 months of age correlated with reduced hippocampal long-term potentiation and impaired synapse structure. Re-expressing CCL5 in knockout mouse hippocampus restored synaptic protein expression, neuronal connectivity and cognitive function. Using metabolomics coupled with FDG-PET imaging and seahorse analysis, we found that CCL5 participates in hippocampal fructose and mannose degradation, glycolysis, gluconeogenesis as well as glutamate and purine metabolism. CCL5 additionally supports mitochondrial structural integrity, purine synthesis, ATP generation, and subsequent aerobic glucose metabolism. Overexpressing CCL5 in WT mice also enhanced memory-cognition performance as well as hippocampal neuronal activity and connectivity through promotion of de novo purine and glutamate metabolism. Thus, CCL5 actions on glucose aerobic metabolism are critical for mitochondrial function which contribute to hippocampal spine and synapse formation, improving learning and memory.


Assuntos
Memória , Sinapses , Animais , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Camundongos , Camundongos Knockout , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo
6.
Alzheimers Dement ; 18(11): 2327-2340, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35234334

RESUMO

OBJECTIVE: Evaluating the efficacy of 3,6'-dithioPomalidomide in 5xFAD Alzheimer's disease (AD) mice to test the hypothesis that neuroinflammation is directly involved in the development of synaptic/neuronal loss and cognitive decline. BACKGROUND: Amyloid-ß (Aß) or tau-focused clinical trials have proved unsuccessful in mitigating AD-associated cognitive impairment. Identification of new drug targets is needed. Neuroinflammation is a therapeutic target in neurodegenerative disorders, and TNF-α a pivotal neuroinflammatory driver. NEW HYPOTHESIS: AD-associated chronic neuroinflammation directly drives progressive synaptic/neuronal loss and cognitive decline. Pharmacologically mitigating microglial/astrocyte activation without altering Aß generation will define the role of neuroinflammation in AD progression. MAJOR CHALLENGES: Difficulty of TNF-α-lowering compounds reaching brain, and identification of a therapeutic-time window to preserve the beneficial role of neuroinflammatory processes. LINKAGE TO OTHER MAJOR THEORIES: Microglia/astroglia are heavily implicated in maintenance of synaptic plasticity/function in healthy brain and are disrupted by Aß. Mitigation of chronic gliosis can restore synaptic homeostasis/cognitive function.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Animais , Camundongos , Peptídeos beta-Amiloides , Cognição , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia , Doenças Neuroinflamatórias , Plasticidade Neuronal , Fator de Necrose Tumoral alfa
7.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361041

RESUMO

Traumatic brain injury (TBI) is a leading cause of disability and mortality worldwide. It can instigate immediate cell death, followed by a time-dependent secondary injury that results from disproportionate microglial and astrocyte activation, excessive inflammation and oxidative stress in brain tissue, culminating in both short- and long-term cognitive dysfunction and behavioral deficits. Within the brain, the hippocampus is particularly vulnerable to a TBI. We studied a new pomalidomide (Pom) analog, namely, 3,6'-dithioPom (DP), and Pom as immunomodulatory imide drugs (IMiD) for mitigating TBI-induced hippocampal neurodegeneration, microgliosis, astrogliosis and behavioral impairments in a controlled cortical impact (CCI) model of TBI in rats. Both agents were administered as a single intravenous dose (0.5 mg/kg) at 5 h post injury so that the efficacies could be compared. Pom and DP significantly reduced the contusion volume evaluated at 24 h and 7 days post injury. Both agents ameliorated short-term memory deficits and anxiety behavior at 7 days after a TBI. The number of degenerating neurons in the CA1 and dentate gyrus (DG) regions of the hippocampus after a TBI was reduced by Pom and DP. DP, but not Pom, significantly attenuated the TBI-induced microgliosis and DP was more efficacious than Pom at attenuating the TBI-induced astrogliosis in CA1 and DG at 7D after a TBI. In summary, a single intravenous injection of Pom or DP, given 5 h post TBI, significantly reduced hippocampal neurodegeneration and prevented cognitive deficits with a concomitant attenuation of the neuroinflammation in the hippocampus.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Gliose/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Fatores Imunológicos/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Talidomida/análogos & derivados , Animais , Lesões Encefálicas Traumáticas/complicações , Cognição , Gliose/etiologia , Hipocampo/metabolismo , Fatores Imunológicos/farmacologia , Masculino , Memória , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley , Talidomida/farmacologia , Talidomida/uso terapêutico
8.
J Neurochem ; 150(1): 56-73, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30933310

RESUMO

To determine the role of reduced dopaminergic transmission for declines of forced versus spontaneous behavior, we used a model of Parkinson's disease with progressive degeneration of dopamine (DA) neurons, the MitoPark mouse. Mice were subjected to rotarod tests of motor coordination, and open field and cylinder tests for spontaneous locomotor activity and postural axial support. To measure DA release in dorsal striatum and the shell of Nucleus Accumbens (NAc), we used ex vivo fast-scan cyclic voltammetry in 6- to 24-week-old mice. To determine decline of DA transporter function, we used 18FE-PE2I positron emission tomography. We show here that fast-scan cyclic voltammetry is a sensitive tool to detect evoked DA release dysfunction in MitoPark mice and that electrically evoked DA release is affected earlier in nigrostriatal than mesolimbic DA systems. DA reuptake was also affected more slowly in NAc shell. Positron emission tomography data showed DA uptake to be barely above detection levels in 16- and 20-week-old MitoPark mice. Rotarod performance was not impaired until mice were 16 weeks old, when evoked DA release in striatum had decreased to ≈ 40% of wild-type levels. In contrast, impairment of open field locomotion and rearing began at 10 weeks, in parallel with the initial modest decline of evoked DA release. We conclude that forced behaviors, such as motivation not to fall, can be partially maintained even when DA release is severely compromised, whereas spontaneous behaviors are much more sensitive to impaired DA release, and that presumed secondary non-dopaminergic system alterations do not markedly counteract or aggravate effects of severe impairment of DA release. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Assuntos
Comportamento Animal/fisiologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Degeneração Neural/metabolismo , Transtornos Parkinsonianos/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Locomoção/fisiologia , Camundongos , Transtornos Parkinsonianos/complicações
9.
Neurobiol Dis ; 130: 104528, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295555

RESUMO

Mild traumatic brain injury (mTBI) is a risk factor for neurodegenerative disorders, such as Alzheimer's disease (AD) and Parkinson's disease (PD). TBI-derived neuropathologies are promoted by inflammatory processes: chronic microgliosis and release of pro-inflammatory cytokines that further promote neuronal dysfunction and loss. Herein, we evaluated the effect on pre-programmed cell death/neuroinflammation/synaptic integrity and function of (-)-Phenserine tartrate (Phen), an agent originally developed for AD. This was studied at two clinically translatable doses (2.5 and 5.0 mg/kg, BID), in a weight drop (concussive) mTBI model in wild type (WT) and AD APP/PSEN1 transgenic mice. Phen mitigated mTBI-induced cognitive impairment, assessed by Novel Object Recognition and Y-maze behavioral paradigms, in WT mice. Phen fully abated mTBI-induced neurodegeneration, evaluated by counting Fluoro-Jade C-positive (FJC+) cells, in hippocampus and cortex of WT mice. In APP/PSEN1 mice, degenerating cell counts were consistently greater across all experimental groups vs. WT mice. mTBI elevated FJC+ cell counts vs. the APP/PSEN1 control (sham) group, and Phen similarly mitigated this. Anti-inflammatory effects on microglial activation (IBA1-immunoreactivity (IR)) and the pro-inflammatory cytokine TNF-α were evaluated. mTBI increased IBA1-IR and TNF-α/IBA1 colocalization vs. sham, both in WT and APP/PSEN1 mice. Phen decreased IBA1-IR throughout hippocampi and cortices of WT mice, and in cortices of AD mice. Phen, likewise, reduced levels of IBA1/TNF-α-IR colocalization volume across all areas in WT animals, with a similar trend in APP/PSEN1 mice. Actions on astrocyte activation by mTBI were followed by evaluating GFAP, and were similarly mitigated by Phen. Synaptic density was evaluated by quantifying PSD-95+ dendritic spines and Synaptophysin (Syn)-IR. Both were significantly reduced in mTBI vs. sham in both WT and APP/PSEN1 mice. Phen fully reversed the PSD-95+ spine loss in WT and Syn-IR decrease in both WT and APP/PSEN1 mice. To associate immunohistochemical changes in synaptic markers with function, hippocampal long term potentiation (LTP) was induced in WT mice. LTP was impaired by mTBI, and this impairment was mitigated by Phen. In synopsis, clinically translatable doses of Phen ameliorated mTBI-mediated pre-programmed cell death/neuroinflammation/synaptic dysfunction in WT mice, consistent with fully mitigating mTBI-induced cognitive impairments. Phen additionally demonstrated positive actions in the more pathologic brain microenvironment of AD mice, further supporting consideration of its repurposing as a treatment for mTBI.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Concussão Encefálica/tratamento farmacológico , Morte Celular/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Fisostigmina/análogos & derivados , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Concussão Encefálica/metabolismo , Concussão Encefálica/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fisostigmina/farmacologia , Fisostigmina/uso terapêutico
10.
Neurobiol Dis ; 124: 439-453, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30471415

RESUMO

Traumatic brain injury (TBI) is a neurodegenerative disorder for which no effective pharmacological treatment is available. Glucagon-like peptide 1 (GLP-1) analogues such as Exenatide have previously demonstrated neurotrophic and neuroprotective effects in cellular and animal models of TBI. However, chronic or repeated administration was needed for efficacy. In this study, the pharmacokinetics and efficacy of PT302, a clinically available sustained-release Exenatide formulation (SR-Exenatide) were evaluated in a concussive mild (m)TBI mouse model. A single subcutaneous (s.c.) injection of PT302 (0.6, 0.12, and 0.024 mg/kg) was administered and plasma Exenatide concentrations were time-dependently measured over 3 weeks. An initial rapid regulated release of Exenatide in plasma was followed by a secondary phase of sustained-release in a dose-dependent manner. Short- and longer-term (7 and 30 day) cognitive impairments (visual and spatial deficits) induced by weight drop mTBI were mitigated by a single post-injury treatment with Exenatide delivered by s.c. injection of PT302 in clinically translatable doses. Immunohistochemical evaluation of neuronal cell death and inflammatory markers, likewise, cross-validated the neurotrophic and neuroprotective effects of SR-Exenatide in this mouse mTBI model. Exenatide central nervous system concentrations were 1.5% to 2.0% of concomitant plasma levels under steady-state conditions. These data demonstrate a positive beneficial action of PT302 in mTBI. This convenient single, sustained-release dosing regimen also has application for other neurological disorders, such as Alzheimer's disease, Parkinson's disease, multiple system atrophy and multiple sclerosis where prior preclinical studies, likewise, have demonstrated positive Exenatide actions.


Assuntos
Concussão Encefálica/patologia , Exenatida/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Preparações de Ação Retardada , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos ICR , Ratos , Ratos Sprague-Dawley
12.
Nature ; 501(7467): 412-5, 2013 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-23965628

RESUMO

Ageing is due to an accumulation of various types of damage, and mitochondrial dysfunction has long been considered to be important in this process. There is substantial sequence variation in mammalian mitochondrial DNA (mtDNA), and the high mutation rate is counteracted by different mechanisms that decrease maternal transmission of mutated mtDNA. Despite these protective mechanisms, it is becoming increasingly clear that low-level mtDNA heteroplasmy is quite common and often inherited in humans. We designed a series of mouse mutants to investigate the extent to which inherited mtDNA mutations can contribute to ageing. Here we report that maternally transmitted mtDNA mutations can induce mild ageing phenotypes in mice with a wild-type nuclear genome. Furthermore, maternally transmitted mtDNA mutations lead to anticipation of reduced fertility in mice that are heterozygous for the mtDNA mutator allele (PolgA(wt/mut)) and aggravate premature ageing phenotypes in mtDNA mutator mice (PolgA(mut/mut)). Unexpectedly, a combination of maternally transmitted and somatic mtDNA mutations also leads to stochastic brain malformations. Our findings show that a pre-existing mutation load will not only allow somatic mutagenesis to create a critically high total mtDNA mutation load sooner but will also increase clonal expansion of mtDNA mutations to enhance the normally occurring mosaic respiratory chain deficiency in ageing tissues. Our findings suggest that maternally transmitted mtDNA mutations may have a similar role in aggravating aspects of normal human ageing.


Assuntos
Envelhecimento/genética , Encéfalo/anormalidades , Encéfalo/metabolismo , DNA Mitocondrial/genética , Herança Extracromossômica/genética , Mitocôndrias/genética , Mutação/genética , Envelhecimento/patologia , Alelos , Animais , Encéfalo/crescimento & desenvolvimento , Núcleo Celular/genética , Feminino , Genoma/genética , Heterozigoto , Tamanho da Ninhada de Vivíparos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese/genética , Fenótipo , Reprodução/genética , Reprodução/fisiologia , Processos Estocásticos
13.
Int J Mol Sci ; 20(24)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835787

RESUMO

This study analyzed gender differences in the progressive dopamine (DA) deficiency phenotype in the MitoPark (MP) mouse model of Parkinson's disease (PD) with progressive loss of DA release and reuptake in midbrain DA pathways. We found that the progressive loss of these DA presynaptic parameters begins significantly earlier in male than female MP mice. This was correlated with behavioral gender differences of both forced and spontaneous motor behavior. The degeneration of the nigrostriatal DA system in MP mice is earlier and more marked than that of the mesolimbic DA system, with male MP mice again being more strongly affected than female MP mice. After ovariectomy, DA presynaptic and behavioral changes in female mice become very similar to those of male animals. Our results suggest that estrogen, either directly or indirectly, is neuroprotective in the midbrain DA system. Our results are compatible with epidemiological data on incidence and symptom progression in PD, showing that men are more strongly affected than women at early ages.


Assuntos
Dopamina/metabolismo , Atividade Motora , Doença de Parkinson/fisiopatologia , Animais , Comportamento Animal , Modelos Animais de Doenças , Estimulação Elétrica , Feminino , Masculino , Camundongos Endogâmicos C57BL , Ovariectomia , Probabilidade , Tirosina 3-Mono-Oxigenase/metabolismo
14.
Int J Mol Sci ; 20(3)2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30682785

RESUMO

Traumatic brain injury (TBI) is a major cause of mortality and disability worldwide. Long-term deficits after TBI arise not only from the direct effects of the injury but also from ongoing processes such as neuronal excitotoxicity, inflammation, oxidative stress and apoptosis. Tumor necrosis factor-α (TNF-α) is known to contribute to these processes. We have previously shown that 3,6'-dithiothalidomide (3,6'-DT), a thalidomide analog that is more potent than thalidomide with similar brain penetration, selectively inhibits the synthesis of TNF-α in cultured cells and reverses behavioral impairments induced by mild TBI in mice. In the present study, we further explored the therapeutic potential of 3,6'-DT in an animal model of moderate TBI using Sprague-Dawley rats subjected to controlled cortical impact. A single dose of 3,6'-DT (28 mg/kg, i.p.) at 5 h after TBI significantly reduced contusion volume, neuronal degeneration, neuronal apoptosis and neurological deficits at 24 h post-injury. Expression of pro-inflammatory cytokines in the contusion regions were also suppressed at the transcription and translation level by 3,6'-DT. Notably, neuronal oxidative stress was also suppressed by 3,6'-DT. We conclude that 3,6'-DT may represent a potential therapy to ameliorate TBI-induced functional deficits.


Assuntos
Anti-Inflamatórios/uso terapêutico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Talidomida/análogos & derivados , Animais , Anti-Inflamatórios/farmacologia , Linhagem Celular , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley , Talidomida/farmacologia , Talidomida/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo
15.
Int J Neuropsychopharmacol ; 21(10): 949-961, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29905798

RESUMO

Background: Traumatic brain injury is known to impact dopamine-mediated reward pathways, but the underlying mechanisms have not been fully established. Methods: Nicotine-induced conditional place preference was used to study rats exposed to a 6-psi fluid percussion injury with and without prior exposure to nicotine. Preference was quantified as a score defined as (C1 - C2) / (C1 + C2), where C1 is time in the nicotine-paired compartment and C2 is time in the saline-paired compartment. Subsequent fast-scan cyclic voltammetry was used to analyze the impact of nicotine infusion on dopamine release in the shell portion of the nucleus accumbens. To further determine the influence of brain injury on nicotine withdrawal, nicotine infusion was administered to the rats after fluid percussion injury. The effects of fluid percussion injury on conditional place preference after prior exposure to nicotine and abstinence or withdrawal from nicotine were also assessed. Results: After traumatic brain injury, dopamine release was reduced in the nucleus accumbens shell, and nicotine-induced conditional place preference preference was significantly impaired. Preference scores of control, sham-injured, and fluid percussion injury groups were 0.1627±0.04204, 0.1515±0.03806, and -0.001300±0.04286, respectively. Nicotine-induced conditional place preference was also seen in animals after nicotine pretreatment, with a conditional place preference score of 0.07805±0.02838. Nicotine preexposure substantially increased tonic dopamine release in sham-injured animals, but it did not change phasic release; nicotine exposure after fluid percussion injury enhanced phasic release, though not to the same levels seen in sham-injured rats. Conditioned preference was related not only to phasic dopamine release (r=0.8110) but also to the difference between tonic and phasic dopamine levels (r=0.9521). Conclusions: Traumatic brain injury suppresses dopamine release from the shell portion of the nucleus accumbens, which in turn significantly alters reward-seeking behavior. These results have important implications for tobacco and drug use after traumatic brain injury.


Assuntos
Condicionamento Psicológico/efeitos dos fármacos , Traumatismos Craniocerebrais/metabolismo , Traumatismos Craniocerebrais/psicologia , Dopamina/metabolismo , Nicotina/farmacologia , Núcleo Accumbens/metabolismo , Animais , Masculino , Microinjeções , Ratos , Síndrome de Abstinência a Substâncias/psicologia
16.
Int J Mol Sci ; 19(10)2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30347766

RESUMO

Due to its high oxygen demand and abundance of peroxidation-susceptible lipid cells, the brain is particularly vulnerable to oxidative stress. Induced by a redox state imbalance involving either excessive generation of reactive oxygen species (ROS) or dysfunction of the antioxidant system, oxidative stress plays a central role in a common pathophysiology that underpins neuronal cell death in acute neurological disorders epitomized by stroke and chronic ones such as Alzheimer's disease. After cerebral ischemia, for example, inflammation bears a key responsibility in the development of permanent neurological damage. ROS are involved in the mechanism of post-ischemic inflammation. The activation of several inflammatory enzymes produces ROS, which subsequently suppress mitochondrial activity, leading to further tissue damage. Pomalidomide (POM) is a clinically available immunomodulatory and anti-inflammatory agent. Using H2O2-treated rat primary cortical neuronal cultures, we found POM displayed neuroprotective effects against oxidative stress and cell death that associated with changes in the nuclear factor erythroid derived 2/superoxide dismutase 2/catalase signaling pathway. POM also suppressed nuclear factor kappa-light-chain-enhancer (NF-κB) levels and significantly mitigated cortical neuronal apoptosis by regulating Bax, Cytochrome c and Poly (ADP-ribose) polymerase. In summary, POM exerted neuroprotective effects via its anti-oxidative and anti-inflammatory actions against H2O2-induced injury. POM consequently represents a potential therapeutic agent against brain damage and related disorders and warrants further evaluation.


Assuntos
Antioxidantes/farmacologia , Apoptose , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Talidomida/análogos & derivados , Animais , Células Cultivadas , Córtex Cerebral/citologia , Peróxido de Hidrogênio/toxicidade , Neurônios/metabolismo , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Talidomida/farmacologia
17.
Int J Mol Sci ; 19(4)2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29641447

RESUMO

In the present study, the effectiveness of glucose-dependent insulinotropic polypeptide (GIP) was evaluated by behavioral tests in 6-hydroxydopamine (6-OHDA) hemi-parkinsonian (PD) rats. Pharmacokinetic measurements of GIP were carried out at the same dose studied behaviorally, as well as at a lower dose used previously. GIP was delivered by subcutaneous administration (s.c.) using implanted ALZET micro-osmotic pumps. After two days of pre-treatment, male Sprague Dawley rats received a single unilateral injection of 6-OHDA into the medial forebrain bundle (MFB). The neuroprotective effects of GIP were evaluated by apomorphine-induced contralateral rotations, as well as by locomotor and anxiety-like behaviors in open-field tests. Concentrations of human active and total GIP were measured in plasma during a five-day treatment period by ELISA and were found to be within a clinically translatable range. GIP pretreatment reduced behavioral abnormalities induced by the unilateral nigrostriatal dopamine (DA) lesion produced by 6-OHDA, and thus may be a novel target for PD therapeutic development.


Assuntos
Antiparkinsonianos/uso terapêutico , Incretinas/uso terapêutico , Transtornos Parkinsonianos/tratamento farmacológico , Animais , Antiparkinsonianos/administração & dosagem , Incretinas/administração & dosagem , Locomoção , Masculino , Oxidopamina/toxicidade , Transtornos Parkinsonianos/etiologia , Ratos , Ratos Sprague-Dawley
18.
J Biomed Sci ; 24(1): 71, 2017 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-28886718

RESUMO

Traumatic brain injury (TBI) is one of the most common causes of morbidity and mortality of both young adults of less than 45 years of age and the elderly, and contributes to about 30% of all injury deaths in the United States of America. Whereas there has been a significant improvement in our understanding of the mechanism that underpin the primary and secondary stages of damage associated with a TBI incident, to date however, this knowledge has not translated into the development of effective new pharmacological TBI treatment strategies. Prior experimental and clinical studies of drugs working via a single mechanism only may have failed to address the full range of pathologies that lead to the neuronal loss and cognitive impairment evident in TBI and other disorders. The present review focuses on two drugs with the potential to benefit multiple pathways considered important in TBI. Notably, both agents have already been developed into human studies for other conditions, and thus have the potential to be rapidly repositioned as TBI therapies. The first is N-acetyl cysteine (NAC) that is currently used in over the counter medications for its anti-inflammatory properties. The second is (-)-phenserine ((-)-Phen) that was originally developed as an experimental Alzheimer's disease (AD) drug. We briefly review background information about TBI and subsequently review literature suggesting that NAC and (-)-Phen may be useful therapeutic approaches for TBI, for which there are no currently approved drugs.


Assuntos
Acetilcisteína/uso terapêutico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Reposicionamento de Medicamentos , Fisostigmina/análogos & derivados , Psicotrópicos/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Inibidores da Colinesterase/uso terapêutico , Humanos , Camundongos , Fisostigmina/uso terapêutico , Ratos
19.
J Neurochem ; 138(5): 746-57, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27317935

RESUMO

p53, a stress response gene, is involved in diverse cell death pathways and its activation has been implicated in the pathogenesis of Parkinson's disease (PD). However, whether the neuronal p53 protein plays a direct role in regulating dopaminergic (DA) neuronal cell death is unknown. In this study, in contrast to the global inhibition of p53 function by pharmacological inhibitors and in traditional p53 knock-out (KO) mice, we examined the effect of DA specific p53 gene deletion in DAT-p53KO mice. These DAT-p53KO mice did not exhibit apparent changes in the general structure and neuronal density of DA neurons during late development and in aging. However, in DA-p53KO mice treated with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), we found that the induction of Bax and p53 up-regulated modulator of apoptosis (PUMA) mRNA and protein levels by MPTP were diminished in both striatum and substantia nigra of these mice. Notably, deletion of the p53 gene in DA neurons significantly reduced dopaminergic neuronal loss in substantia nigra, dopaminergic neuronal terminal loss at striatum and, additionally, decreased motor deficits in mice challenged with MPTP. In contrast, there was no difference in astrogliosis between WT and DAT-p53KO mice in response to MPTP treatment. These findings demonstrate a specific contribution of p53 activation in DA neuronal cell death by MPTP challenge. Our results further support the role of programmed cell death mediated by p53 in this animal model of PD and identify Bax, BAD and PUMA genes as downstream targets of p53 in modulating DA neuronal death in the in vivo MPTP-induced PD model. We deleted p53 gene in dopaminergic neurons in late developmental stages and found that DA specific p53 deletion is protective in acute MPTP animal model possibly through blocking MPTP-induced BAX and PUMA up-regulation. Astrocyte activation measured by GFAP positive cells and GFAP gene up-regulation in the striatum shows no difference between wt and DA-p53 ko mice.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Genes p53/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/metabolismo , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Knockout , Substância Negra/metabolismo
20.
Neurobiol Dis ; 96: 216-226, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27553877

RESUMO

Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Neuronal apoptosis in the hippocampus has been detected after TBI. The hippocampal dysfunction may result in cognitive deficits in learning, memory, and spatial information processing. Our previous studies demonstrated that a p53 inhibitor, pifithrin-α oxygen analogue (PFT-α (O)), significantly reduced cortical cell death, which is substantial following controlled cortical impact (CCI) TBI, and improved neurological functional outcomes via anti-apoptotic mechanisms. In the present study, we examined the effect of PFT-α (O) on CCI TBI-induced hippocampal cellular pathophysiology in light of this brain region's role in memory. To investigate whether p53-dependent apoptosis plays a role in hippocampal neuronal loss and associated cognitive deficits and to define underlying mechanisms, SD rats were subjected to experimental CCI TBI followed by the administration of PFT-α or PFT-α (O) (2mg/kg, i.v.) or vehicle at 5h after TBI. Magnetic resonance imaging (MRI) scans were acquired at 24h and 7days post-injury to assess evolving structural hippocampal damage. Fluoro-Jade C was used to stain hippocampal sub-regions, including CA1 and dentate gyrus (DG), for cellular degeneration. Neurological functions, including motor and recognition memory, were assessed by behavioral tests at 7days post injury. p53, p53 upregulated modulator of apoptosis (PUMA), 4-hydroxynonenal (4-HNE), cyclooxygenase-IV (COX IV), annexin V and NeuN were visualized by double immunofluorescence staining with cell-specific markers. Levels of mRNA encoding for caspase-3, p53, PUMA, Bcl-2, Bcl-2-associated X protein (BAX) and superoxide dismutase (SOD) were measured by RT-qPCR. Our results showed that post-injury administration of PFT-α and, particularly, PFT-α (O) at 5h dramatically reduced injury volumes in the ipsilateral hippocampus, improved motor outcomes, and ameliorated cognitive deficits at 7days after TBI, as evaluated by novel object recognition and open-field test. PFT-α and especially PFT-α (O) significantly reduced the number of FJC-positive cells in hippocampus CA1 and DG subregions, versus vehicle treatment, and significantly decreased caspase-3 and PUMA mRNA expression. PFT-α (O), but not PFT-α, treatment significantly lowered p53 and elevated SOD2 mRNA expression. Double immunofluorescence staining demonstrated that PFT-α (O) treatment decreased p53, annexin V and 4-HNE positive neurons in the hippocampal CA1 region. Furthermore, PUMA co-localization with the mitochondrial maker COX IV, and the upregulation of PUMA were inhibited by PFT-α (O) after TBI. Our data suggest that PFT-α and especially PFT-α (O) significantly reduce hippocampal neuronal degeneration, and ameliorate neurological and cognitive deficits in vivo via antiapoptotic and antioxidative properties.


Assuntos
Benzotiazóis/uso terapêutico , Lesões Encefálicas Traumáticas/complicações , Transtornos Cognitivos , Tolueno/análogos & derivados , Proteína Supressora de Tumor p53/metabolismo , Aldeídos/metabolismo , Animais , Anexina A5/genética , Anexina A5/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Benzotiazóis/química , Benzotiazóis/farmacologia , Encéfalo/diagnóstico por imagem , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Transtornos Cognitivos/diagnóstico por imagem , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/patologia , Modelos Animais de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Comportamento Exploratório/efeitos dos fármacos , Fluoresceínas/metabolismo , Imageamento por Ressonância Magnética , Masculino , Oxigênio , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Reconhecimento Psicológico/efeitos dos fármacos , Fatores de Tempo , Tolueno/química , Tolueno/farmacologia , Tolueno/uso terapêutico , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA