Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(5): 4437-4451, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38785537

RESUMO

The aim of this study was to characterize the genotype and phenotype heterogeneity of patients with SCN1A gene mutations in the Polish population, fulfilling the criteria for the diagnosis of Dravet syndrome (DRVT). Particularly important was the analysis of the clinical course, the type of epileptic seizures and the co-occurrence of additional features such as intellectual disability, autism or neurological symptoms such as ataxia or gait disturbances. Based on their results and the available literature, the authors discuss potential predictors for DRVT. Identifying these early symptoms has important clinical significance, affecting the course and disease prognosis. 50 patients of the Pediatric Neurology Clinic of the Institute of Mother and Child in Warsaw clinically diagnosed with DRVT and carriers of SCN1A pathogenic variants were included. Clinical data were retrospectively collected from caregivers and available medical records. Patients in the study group did not differ significantly in parameters such as type of first seizure and typical epileptic seizures from those described in other studies. The age of onset of the first epileptic seizure was 2-9 months. The co-occurrence of intellectual disability was confirmed in 71% of patients and autism in 18%. The study did not show a correlation between genotype and phenotype, considering the severity of the disease course, clinical symptoms, response to treatment, the presence of intellectual disability, autism symptoms or ataxia. From the clinical course, a significant problem was the differentiation between complex febrile convulsions and symptoms of DRVT. The authors suggest that parameters such as the age of the first seizure, less than one year of age, the onset of a seizure up to 72 h after vaccination and the presence of more than two features of complex febrile seizures are more typical of DRVT, which should translate into adequate diagnostic and clinical management. The substantial decrease in the age of genetic verification of the diagnosis, as well as the decline in the use of sodium channel inhibitors, underscores the growing attention of pediatric neurologists in Poland to the diagnosis of DRVT.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38916623

RESUMO

Benign hereditary chorea (BHC) is an inherited neurological disorder consisting of childhood-onset, nonprogressive chorea, generally without any other manifestations. In most reported cases, the inheritance of BHC is autosomal dominant but both incomplete penetrance and variable expressivity are observed and can be caused by NKX2-1 mutations. The spectrum contains choreoathetosis, congenital hypothyroidism, and neonatal respiratory distress syndrome. The neurological symptoms can be misdiagnosed as Huntington's disease (HD). The two Polish families were diagnosed with NKX2-1 gene mutations and a literature review concerning the NKX2-1-related disorders was conducted. All family members were examined by experienced movement disorders specialists. PubMed database was searched to obtain previously described NKX2-1 cases. Whole exome sequencing (WES) was performed in one proband (Family A) and direct NKX2-1 sequencing in the second (Family B). Two Polish families were diagnosed with NKX2-1 gene mutations (p.Trp208Leu and p.Cys117Alafs*8). In one family, the co-occurrence of HD was reported. Forty-nine publications were included in the literature review and symptoms of 195 patients with confirmed NKX2-1 mutation were analyzed. The most common symptoms were chorea and choreiform movements, and delayed motor milestones. The NKX2-1 mutation should always be considered as a potential diagnosis in families with chorea, even with a family history of HD. Lack of chorea does not exclude the NKX2-1-related disorders.

3.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339022

RESUMO

Mutations of the SCN1A gene, which encodes the voltage-dependent Na+ channel's α subunit, are associated with diverse epileptic syndromes ranging in severity, even intra-family, from febrile seizures to epileptic encephalopathy. The underlying cause of this variability is unknown, suggesting the involvement of additional factors. The aim of our study was to describe the properties of mutated channels and investigate genetic causes for clinical syndromes' variability in the family of five SCN1A gene p.Arg1596Cys mutation carriers. The analysis of additional genetic factors influencing SCN1A-associated phenotypes was conducted through exome sequencing (WES). To assess the impact of mutations, we used patch clamp analysis of mutated channels expressed in HEK cells and in vivo neural excitability studies (NESs). In cells expressing the mutant channel, sodium currents were reduced. NESs indicated increased excitability of peripheral motor neurons in mutation carriers. WES showed the absence of non-SCA1 pathogenic variants that could be causative of disease in the family. Variants of uncertain significance in three genes, as potential modifiers of the most severe phenotype, were identified. The p.Arg1596Cys substitution inhibits channel function, affecting steady-state inactivation kinetics. Its clinical manifestations involve not only epileptic symptoms but also increased excitability of peripheral motor fibers. The role of Nav1.1 in excitatory neurons cannot be ruled out as a significant factor of the clinical phenotype.


Assuntos
Epilepsia Generalizada , Epilepsia , Canal de Sódio Disparado por Voltagem NAV1.1 , Convulsões Febris , Humanos , Epilepsia/patologia , Epilepsia Generalizada/genética , Mutação , Fenótipo , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo
4.
Neurol Neurochir Pol ; 58(2): 161-166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38230756

RESUMO

INTRODUCTION: ADCY5-related dyskinesia is a rare neurological disease caused by mutations in the gene encoding the adenylyl cyclase 5 (ADCY5) isoform, a protein that plays an important role in intracellular transmission. Variants in ADCY5 are associated with a spectrum of neurological disease encompassing dyskinesia, chorea, and dystonia. State of the-art. ADCY5 mutations result in clinically heterogeneous manifestations which comprise a range of core and less to highly variable symptoms. Due to the heterogeneous nature and difficulty in diagnosis of the disorder, available treatments are highly limited. CLINICAL IMPLICATIONS: ADCY5-related dyskinesia was reported in 52 individuals in the literature over a five-year period (January 2017 to January 2022). We have listed all the symptoms and their frequency. The most common symptom reported in these patients was dystonia. Over 50% of patients developed dyskinesia and chorea. We report two cases of familial occurrence of symptomatic ADCY5-related dyskinesia. A 45-year-old patient presented with involuntary movements which had been occurring since childhood. The proband's neurological examination revealed dysarthria, involuntary myoclonic twitches, and choreic movements. The patient's 9-year-old son had developed involuntary movements, mainly chorea and dystonia. FUTURE DIRECTIONS: This paper aims to summarise the recent literature on ADCY5-related neurological disorders and to present a new case of a Polish family with ADCY5 mutation. Genetic diagnostics are important in the context of possible future targeted treatments.


Assuntos
Adenilil Ciclases , Humanos , Adenilil Ciclases/genética , Masculino , Pessoa de Meia-Idade , Criança , Coreia/genética , Discinesias/genética , Discinesias/etiologia , Mutação , Feminino
5.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674629

RESUMO

Studies conducted on large populations show a lack of connection between vaccination and serious neurological symptoms. However, there are isolated cases that indicate such a relationship. These reports on adverse effects following immunization (AEFI) reduce social confidence in vaccination; however, their background may be rare genetic defects. The aim of the presented study was to examine if neurological AEFI in children may be associated with variants in genes related to neurodevelopment. To identify such possible associations, a descriptive study of the Polish case series was conducted. We performed next-generation sequencing in patients who, up to 4 weeks of injection of any vaccine, manifested neurological AEFI. We included 23 previously normally developing children with first seizures that occurred after vaccination. We identified pathogenic/likely pathogenic variants in genes engaged in neurodevelopment in nine patients and variants of uncertain significance in another nine patients. The mutated genes belonged to the group of genes related to epilepsy syndromes/epileptic encephalopathy. We showed that AEFI might have a genetic background. We hypothesized that in some AEFI patients, the vaccine might only trigger neurological symptoms that would have been manifested anyway as a result of a pathogenic variant in a gene engaged in neurodevelopment.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Vacinas , Humanos , Criança , Polônia , Imunização , Vacinação/efeitos adversos , Vacinas/efeitos adversos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Convulsões/genética , Convulsões/induzido quimicamente , Fatores de Risco , Sistemas de Notificação de Reações Adversas a Medicamentos
6.
Int J Mol Sci ; 23(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35806091

RESUMO

Parkinson's disease (PD) is generally considered a sporadic disorder, but a strong genetic background is often found. The aim of this study was to identify the underlying genetic cause of PD in two affected siblings and to subsequently assess the role of mutations in Cathepsin B (CTSB) in susceptibility to PD. A typical PD family was identified and whole-exome sequencing was performed in two affected siblings. Variants of interest were validated using Sanger sequencing. CTSB p.Gly284Val was genotyped in 2077 PD patients and 615 unrelated healthy controls from the Czech Republic, Ireland, Poland, Ukraine, and the USA. The gene burden analysis was conducted for the CTSB gene in an additional 769 PD probands from Mayo Clinic Florida familial PD cohort. CTSB expression and activity in patient-derived fibroblasts and controls were evaluated by qRT-PCR, western blot, immunocytochemistry, and enzymatic assay. The CTSB p.Gly284Val candidate variant was only identified in affected family members. Functional analysis of CTSB patient-derived fibroblasts under basal conditions did not reveal overt changes in endogenous expression, subcellular localization, or enzymatic activity in the heterozygous carrier of the CTSB variant. The identification of the CTSB p.Gly284Val may support the hypothesis that the CTSB locus harbors variants with differing penetrance that can determine the disease risk.


Assuntos
Catepsina B/metabolismo , Doença de Parkinson , Catepsina B/genética , Genótipo , Heterozigoto , Humanos , Doença de Parkinson/genética , Penetrância
7.
Ann Neurol ; 88(2): 348-362, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32515017

RESUMO

OBJECTIVE: Pathogenic variants in SCN3A, encoding the voltage-gated sodium channel subunit Nav1.3, cause severe childhood onset epilepsy and malformation of cortical development. Here, we define the spectrum of clinical, genetic, and neuroimaging features of SCN3A-related neurodevelopmental disorder. METHODS: Patients were ascertained via an international collaborative network. We compared sodium channels containing wild-type versus variant Nav1.3 subunits coexpressed with ß1 and ß2 subunits using whole-cell voltage clamp electrophysiological recordings in a heterologous mammalian system (HEK-293T cells). RESULTS: Of 22 patients with pathogenic SCN3A variants, most had treatment-resistant epilepsy beginning in the first year of life (16/21, 76%; median onset, 2 weeks), with severe or profound developmental delay (15/20, 75%). Many, but not all (15/19, 79%), exhibited malformations of cortical development. Pathogenic variants clustered in transmembrane segments 4 to 6 of domains II to IV. Most pathogenic missense variants tested (10/11, 91%) displayed gain of channel function, with increased persistent current and/or a leftward shift in the voltage dependence of activation, and all variants associated with malformation of cortical development exhibited gain of channel function. One variant (p.Ile1468Arg) exhibited mixed effects, with gain and partial loss of function. Two variants demonstrated loss of channel function. INTERPRETATION: Our study defines SCN3A-related neurodevelopmental disorder along a spectrum of severity, but typically including epilepsy and severe or profound developmental delay/intellectual disability. Malformations of cortical development are a characteristic feature of this unusual channelopathy syndrome, present in >75% of affected individuals. Gain of function at the channel level in developing neurons is likely an important mechanism of disease pathogenesis. ANN NEUROL 2020;88:348-362.


Assuntos
Encéfalo/diagnóstico por imagem , Epilepsia/diagnóstico por imagem , Epilepsia/genética , Canal de Sódio Disparado por Voltagem NAV1.3/genética , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Transtornos do Neurodesenvolvimento/genética , Canais de Sódio/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Feto/diagnóstico por imagem , Variação Genética/genética , Células HEK293 , Humanos , Lactente , Masculino
8.
Clin Auton Res ; 31(1): 117-125, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33502644

RESUMO

PURPOSE: Investigate single nucleotide variants and short tandem repeats in 39 genes related to spinocerebellar ataxia in clinical and pathologically defined cohorts of multiple system atrophy. METHODS: Exome sequencing was conducted in 28 clinical multiple system atrophy patients to identify single nucleotide variants in spinocerebellar ataxia-related genes. Novel variants were validated in two independent disease cohorts: 86 clinically diagnosed multiple system atrophy patients and 166 pathological multiple system atrophy cases. Expanded repeat alleles in spinocerebellar ataxia genes were evaluated in 36 clinically diagnosed multiple system atrophy patients, and CAG/CAA repeats in TATA-Box Binding Protein (TBP, causative of SCA17) were screened in 216 clinical and pathological multiple system atrophy patients and 346 controls. RESULTS: No known pathogenic spinocerebellar ataxia single nucleotide variants or pathogenic range expanded repeat alleles of ATXN1, ATXN2, ATXN3, CACNA1A, AXTN7, ATXN8OS, ATXN10, PPP2R2B, and TBP were detected in any clinical multiple system atrophy patients. However, four novel variants were identified in four spinocerebellar ataxia-related genes across three multiple system atrophy patients. Additionally, four multiple system atrophy patients (1.6%) and one control (0.3%) carried an intermediate length 41 TBP CAG/CAA repeat allele (OR = 4.11, P = 0.21). There was a significant association between the occurrence of a repeat length of longer alleles (> 38 repeats) and an increased risk of multiple system atrophy (OR = 1.64, P = 0.03). CONCLUSION: Occurrence of TBP CAG/CAA repeat length of longer alleles (> 38 repeats) is significantly associated with increased multiple system atrophy risk. This discovery warrants further investigation and supports a possible genetic overlap of multiple system atrophy with SCA17.


Assuntos
Atrofia de Múltiplos Sistemas , Ataxias Espinocerebelares , Ataxina-10 , Humanos , Atrofia de Múltiplos Sistemas/genética , Mutação , Ataxias Espinocerebelares/genética , Proteína de Ligação a TATA-Box/genética , Expansão das Repetições de Trinucleotídeos
9.
Neurol Neurochir Pol ; 55(3): 241-252, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33539026

RESUMO

INTRODUCTION: Genetic forms of Parkinson's disease (PD) often cluster in different ethnic groups and may present with recognisable unique clinical manifestations. Our aim was to summarise the current state of knowledge regarding the genetic causes of PD and describe the first Polish patient with SNCA duplication. METHODOLOGY: We searched the electronic database, PubMed, for studies between January 1995 and June 2020 that evaluated genetics in Polish patients with PD, using the search terms 'Parkinson's disease, 'Polish', 'genetics', 'mutations', and 'variants'. RESULTS: In total, 73 publications were included in the review; 11 genes responsible for monogenic forms and 19 risk factor genes have been analysed in the Polish population. Pathogenic variants were reported in four monogenic genes (LRRK2, PRKN, PINK1, and SNCA). Eight genes were associated with PD risk in the Polish population (GBA, TFAM, NFE2L2, MMP12, HLA-DRA, COMT, MAOB, and DBH). Multiplex ligation-dependent probe amplification and Sanger sequencing in PRKN, PINK1, DJ1, LRRK2, and SNCA revealed SNCA duplication in a 43-year-old Polish patient with PD examined by movement disorder specialists. CONCLUSION: Only a limited number of positive results have been reported in genes previously associated with PD in the Polish population. In the era of personalised medicine, it is important to report on genetic findings in specific populations.


Assuntos
Doença de Parkinson , Adulto , Predisposição Genética para Doença , Humanos , Mutação , Polônia
10.
Epilepsy Behav ; 106: 107036, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32247176

RESUMO

OBJECTIVE: Glucose transporter type 1 deficiency (G1D) syndrome is generally a genetic disorder because of a mutation of the SLC2A1 gene. The clinical picture of G1D is heterogeneous. The aim of this paper was to present the case of G1D, recognized in a three-generation family, caused by missense mutation p.Arg92Trp in SLC2A1 gene, and showing high clinical heterogeneity and evolution of symptoms over time. METHODS: Three-generation family members, showing symptoms suggesting G1D, have been characterized in terms of the clinical picture, electroencephalogram (EEG) recordings, brain neuroimaging, and the psychological assessment data. All subjects were offered genetic testing of the SLC2A1 gene. RESULTS: We sequenced the SLC2A1 gene in the proband of the family and identified the c.274C > T variant (p.Arg92Trp). The presence of the same mutation was confirmed in all affected family members; however, significant variations in the clinical picture among them were observed. In addition to the typical symptoms for G1D (e.g., epilepsy, intellectual disability), patients presented movement disorders, stiffness, and dysarthria, as well as psychiatric symptoms. After using the ketogenic diet, epileptic seizures disappeared, but the rest of the symptoms were resistant to treatment. CONCLUSIONS: Despite the same underlying mutation, clinical symptoms may vary among members of one family. Different clinical symptoms are observed depending on the patient's age. Not all symptoms occur in all patients within one family despite the same genetic background. However, the importance of early therapy for the clinical course of the disease requires further study.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos/diagnóstico por imagem , Erros Inatos do Metabolismo dos Carboidratos/genética , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/genética , Características da Família , Transportador de Glucose Tipo 1/genética , Proteínas de Transporte de Monossacarídeos/deficiência , Adulto , Idoso , Encéfalo/diagnóstico por imagem , Erros Inatos do Metabolismo dos Carboidratos/dietoterapia , Criança , Pré-Escolar , Dieta Cetogênica/métodos , Epilepsia Resistente a Medicamentos/dietoterapia , Feminino , Humanos , Lactente , Masculino , Proteínas de Transporte de Monossacarídeos/genética , Mutação/genética , Linhagem
11.
Genet Med ; 21(10): 2216-2223, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30976099

RESUMO

PURPOSE: To provide a detailed electroclinical description and expand the phenotype of PIGT-CDG, to perform genotype-phenotype correlation, and to investigate the onset and severity of the epilepsy associated with the different genetic subtypes of this rare disorder. Furthermore, to use computer-assisted facial gestalt analysis in PIGT-CDG and to the compare findings with other glycosylphosphatidylinositol (GPI) anchor deficiencies. METHODS: We evaluated 13 children from eight unrelated families with homozygous or compound heterozygous pathogenic variants in PIGT. RESULTS: All patients had hypotonia, severe developmental delay, and epilepsy. Epilepsy onset ranged from first day of life to two years of age. Severity of the seizure disorder varied from treatable seizures to severe neonatal onset epileptic encephalopathies. The facial gestalt of patients resembled that of previously published PIGT patients as they were closest to the center of the PIGT cluster in the clinical face phenotype space and were distinguishable from other gene-specific phenotypes. CONCLUSION: We expand our knowledge of PIGT. Our cases reaffirm that the use of genetic testing is essential for diagnosis in this group of disorders. Finally, we show that computer-assisted facial gestalt analysis accurately assigned PIGT cases to the multiple congenital anomalies-hypotonia-seizures syndrome phenotypic series advocating the additional use of next-generation phenotyping technology.


Assuntos
Aciltransferases/metabolismo , Glicosilfosfatidilinositóis/deficiência , Glicosilfosfatidilinositóis/metabolismo , Convulsões/metabolismo , Anormalidades Múltiplas/genética , Aciltransferases/genética , Criança , Pré-Escolar , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Feminino , Estudos de Associação Genética , Genótipo , Glicosilfosfatidilinositóis/genética , Homozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Linhagem , Fenótipo , Convulsões/genética
12.
Epilepsia ; 60(5): 830-844, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30968951

RESUMO

OBJECTIVE: Pathogenic variants in SCN8A have been associated with a wide spectrum of epilepsy phenotypes, ranging from benign familial infantile seizures (BFIS) to epileptic encephalopathies with variable severity. Furthermore, a few patients with intellectual disability (ID) or movement disorders without epilepsy have been reported. The vast majority of the published SCN8A patients suffer from severe developmental and epileptic encephalopathy (DEE). In this study, we aimed to provide further insight on the spectrum of milder SCN8A-related epilepsies. METHODS: A cohort of 1095 patients were screened using a next generation sequencing panel. Further patients were ascertained from a network of epilepsy genetics clinics. Patients with severe DEE and BFIS were excluded from the study. RESULTS: We found 36 probands who presented with an SCN8A-related epilepsy and normal intellect (33%) or mild (61%) to moderate ID (6%). All patients presented with epilepsy between age 1.5 months and 7 years (mean = 13.6 months), and 58% of these became seizure-free, two-thirds on monotherapy. Neurological disturbances included ataxia (28%) and hypotonia (19%) as the most prominent features. Interictal electroencephalogram was normal in 41%. Several recurrent variants were observed, including Ile763Val, Val891Met, Gly1475Arg, Gly1483Lys, Phe1588Leu, Arg1617Gln, Ala1650Val/Thr, Arg1872Gln, and Asn1877Ser. SIGNIFICANCE: With this study, we explore the electroclinical features of an intermediate SCN8A-related epilepsy with mild cognitive impairment, which is for the majority a treatable epilepsy.


Assuntos
Epilepsia/genética , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Anticonvulsivantes/uso terapêutico , Ataxia/genética , Criança , Pré-Escolar , Disfunção Cognitiva/genética , Eletroencefalografia , Epilepsia/tratamento farmacológico , Epilepsia/fisiopatologia , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/genética , Transtornos dos Movimentos/genética , Hipotonia Muscular/genética , Linhagem , Índice de Gravidade de Doença
13.
Neurol Neurochir Pol ; 51(1): 1-6, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27667361

RESUMO

OBJECTIVE: Dopa-responsive dystonia (DRD) is a rare form of hereditary movement disorder with onset in childhood, characterized by gait difficulties due to postural dystonia with marked improvement after low doses of levodopa. Mutations in the GCH1 gene are the most common cause of DRD, however, in some cases when the disease is associated with parkinsonism mutations in the PARK2 gene may be identified. The aim of this study was to analyze and compare genotype-phenotype correlation. MATERIAL/PARTICIPANTS: Four families with inter- and intrafamilial variability of progressive gait dysfunction due to lower limb dystonia occurring in childhood or adolescence were included in the analysis. METHODS: General and neurological examination was performed for all affected family members and asymptomatic mutation carriers. The molecular analysis encompassed GCH1 and PARK2 genes. RESULTS: All probands were clinically diagnosed with DRD. The molecular analysis revealed, however, that the dopa-responsive dystonia phenotype was caused by a mutation in the GCH1 gene in three families and in the PARK2 gene in one family. Obtained results allowed to establish the final diagnosis for all families as DYT5a or early-onset Parkinson disease (EO-PD). CONCLUSIONS: Reported cases confirm that the DRD phenotype may have heterogeneous genetic background and may be caused by point mutations or rearrangements in the GCH1 gene as well as in the PARK2 gene. Differential diagnosis and genetic tests covering the analysis of genes causative for DRD and EO-PD should be obligatory in both disorders diagnostics as DRD, mainly adolescent onset dystonia, may be associated with parkinsonism.


Assuntos
Distúrbios Distônicos/genética , GTP Cicloidrolase/genética , Doença de Parkinson/genética , Ubiquitina-Proteína Ligases/genética , Adolescente , Adulto , Idade de Início , Criança , Distúrbios Distônicos/fisiopatologia , Feminino , Genótipo , Humanos , Masculino , Doença de Parkinson/fisiopatologia , Linhagem , Fenótipo
14.
Dev Period Med ; 21(4): 317-327, 2017.
Artigo em Polonês | MEDLINE | ID: mdl-29291359

RESUMO

Epilepsy is common neurological condition affecting 0.8-1% of the human population. Since 80% of patients are under 20 years of age, it is mainly a disease of the developmental period. The causes of epilepsy are heterogeneous, but the disease has always been considered a genetic disorder, which no longer doubted. Epilepsy genetics has undergone a revolution since the discovery of the first gene responsible for epilepsy. This is mainly because of introduction of the next generation sequencing as research and diagnostic tool, and transition from studies of pedigrees with epilepsy to the analysis of cases of epileptic encephalopathies. In a short time more than 50 early infantile epileptic encephalopathies were recognized due to the causative genes. Whole exome or targeted panel sequencing has been used as a diagnostic tool with a diagnostic yield of about 30-40%. The "genetic diagnosis" that is obtained makes it possible to introduce targeted treatment in an increasing number of cases. Since epileptic encephalopaties are often regarded as the model disease for epilepsy, these therapeutic strategies can provide treatment for patients with common epilepsies.


Assuntos
Encefalopatias Metabólicas Congênitas/genética , Síndromes Epilépticas/genética , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Encefalopatias Metabólicas Congênitas/diagnóstico , Síndromes Epilépticas/diagnóstico , Técnicas Genéticas/tendências , Transtornos Heredodegenerativos do Sistema Nervoso/diagnóstico , Humanos , Lactente , Espasmos Infantis/diagnóstico , Espasmos Infantis/genética
15.
Am J Hum Genet ; 93(5): 967-75, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24207121

RESUMO

Dravet syndrome is a severe epilepsy syndrome characterized by infantile onset of therapy-resistant, fever-sensitive seizures followed by cognitive decline. Mutations in SCN1A explain about 75% of cases with Dravet syndrome; 90% of these mutations arise de novo. We studied a cohort of nine Dravet-syndrome-affected individuals without an SCN1A mutation (these included some atypical cases with onset at up to 2 years of age) by using whole-exome sequencing in proband-parent trios. In two individuals, we identified a de novo loss-of-function mutation in CHD2 (encoding chromodomain helicase DNA binding protein 2). A third CHD2 mutation was identified in an epileptic proband of a second (stage 2) cohort. All three individuals with a CHD2 mutation had intellectual disability and fever-sensitive generalized seizures, as well as prominent myoclonic seizures starting in the second year of life or later. To explore the functional relevance of CHD2 haploinsufficiency in an in vivo model system, we knocked down chd2 in zebrafish by using targeted morpholino antisense oligomers. chd2-knockdown larvae exhibited altered locomotor activity, and the epileptic nature of this seizure-like behavior was confirmed by field-potential recordings that revealed epileptiform discharges similar to seizures in affected persons. Both altered locomotor activity and epileptiform discharges were absent in appropriate control larvae. Our study provides evidence that de novo loss-of-function mutations in CHD2 are a cause of epileptic encephalopathy with generalized seizures.


Assuntos
Proteínas de Ligação a DNA/genética , Epilepsias Mioclônicas/genética , Animais , Criança , Transtornos Cognitivos/genética , Transtornos Cognitivos/patologia , Estudos de Coortes , Epilepsias Mioclônicas/patologia , Exoma , Feminino , Técnicas de Silenciamento de Genes , Haploinsuficiência , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Larva/genética , Masculino , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Fenótipo , Convulsões Febris/genética , Convulsões Febris/patologia , Adulto Jovem , Peixe-Zebra
16.
Cleft Palate Craniofac J ; 52(5): e161-7, 2015 09.
Artigo em Inglês | MEDLINE | ID: mdl-25489771

RESUMO

OBJECTIVE: To examine the role of the IRF6 mutations in Polish families with Van der Woude syndrome and popliteal pterygium syndrome and to determine the effect of IRF6 single nucleotide polymorphisms (rs7552506, rs2013162, and rs2235375) on cleft lip and/or palate susceptibility. DESIGN: IRF6 mutation screening was performed by direct sequencing of all coding exons of the gene and their flanking intronic regions. Cosegregation analysis was performed to establish the relation of single nucleotide polymorphisms and cleft lip and/or palate phenotypes. PATIENTS: We screened the IRF6 gene in eight families with clinical recognition of Van der Woude syndrome and popliteal pterygium syndrome. RESULTS: In five families we identified pathogenic mutations, all affecting the DNA-binding or the protein-binding domain of IRF6. Two of the mutations were novel-a missense mutation Arg31Thr and a small deletion Trp40Glyfs*23. In most cases we found also a haplotype of three single nucleotide polymorphisms-rs7552506, rs2013162, and rs2235375. The association of the single nucleotide polymorphisms and cleft lip and/or palate susceptibility has been previously published. The variants did not cosegregate with phenotype in examined families nor did they cosegregate with pathogenic mutations. The single nucleotide polymorphisms were deemed not causative, due to their presence in unaffected family members. CONCLUSIONS: Two novel mutations (Arg31Thr and Trp40Glyfs*23) in the IRF6 gene were identified to be causative for Van der Woude and popliteal pterygium syndromes. In the present study no association between the single nucleotide polymorphisms rs7552506, rs2013162, and rs2235375 and the cleft lip and/or palate phenotype was found. The hypothesis, whether the haplotype of the three single nucleotide polymorphisms was correlated with IRF6 expression level, demands further investigation.


Assuntos
Anormalidades Múltiplas/genética , Fenda Labial/genética , Fissura Palatina/genética , Cistos/genética , Anormalidades do Olho/genética , Dedos/anormalidades , Fatores Reguladores de Interferon/genética , Articulação do Joelho/anormalidades , Lábio/anormalidades , Deformidades Congênitas das Extremidades Inferiores/genética , Polimorfismo de Nucleotídeo Único , Sindactilia/genética , Anormalidades Urogenitais/genética , Feminino , Haplótipos , Humanos , Masculino , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Polônia
17.
Neurol Neurochir Pol ; 49(4): 258-66, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26188943

RESUMO

OBJECTIVE: The aim of this study was to analyze the intra-/interfamilial phenotypic heterogeneity due to variants at the highly evolutionary conservative p.Arg1596 residue in the Nav1.1 subunit. MATERIALS/PARTICIPANTS: Among patients referred for analysis of the SCN1A gene one recurrent, heritable mutation was found in families enrolled into the study. Probands from those families even clinically diagnosed with atypical Dravet syndrome (DS), generalized epilepsy with febrile seizures plus (GEFS+), and focal epilepsy, had heterozygous p.Arg1596 His/Cys missense substitutions, c.4787G>T and c.4786C>T in the SCN1A gene. METHOD: Full clinical evaluation, including cognitive development, neurological examination, EEGs, MRI was performed in probands and affected family members in developmental age. The whole SCN1A gene sequencing was performed for all probands. The exon 25, where the identified missense substitutions are localized, was directly analyzed for the other family members. RESULTS: Mutation of the SCN1A p.1596Arg was identified in three families, in one case substitution p.Arg1596Cys and in two cases p.Arg1596His. Both mutations were previously described as pathogenic and causative for DS, GEFS+ and focal epilepsy. Spectrum of phenotypes among presented families with p.Arg1596 mutations shows heterogeneity ranged from asymptomatic cases, through FS and FS+ to GEFS+/Panayiotopoulos syndrome and epilepsies with and without febrile seizures, and epileptic encephalopathy such as DS. Phenotypes differ among patients displaying both focal and generalized epilepsies. Some patients demonstrated additionally Asperger syndrome and ataxia. CONCLUSION: Clinical picture heterogeneity of the patients carrying mutation of the same residue indicates the involvement of the other factors influencing the SCN1A gene mutations' penetrance.


Assuntos
Epilepsias Mioclônicas/genética , Epilepsias Parciais/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Adulto , Criança , Pré-Escolar , Epilepsias Mioclônicas/fisiopatologia , Epilepsias Parciais/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Adulto Jovem
18.
Postepy Biochem ; 61(1): 18-24, 2015.
Artigo em Polonês | MEDLINE | ID: mdl-26281350

RESUMO

Huntington's disease is a progressive neurodegenerative disorder of genetic origin that still lacks an effective treatment. Recently, a number of new attempts have been undertaken to develop a successful molecular therapy for this incurable condition. The novel approaches employ, among others, some new methods to selectively silence the mutated gene or to neutralize its toxic protein product. This paper reviews all major strategies that are currently considered for molecular therapy of Huntington's disease while discussing their potential effectiveness regarding the treatment of both the Huntington's disease and a large group of related neurodegenerative disorders associated with abnormal protein aggregation.


Assuntos
Doença de Huntington/terapia , Terapia de Alvo Molecular/métodos , Inativação Gênica , Humanos , Doença de Huntington/genética
19.
Dev Period Med ; 19(4): 454-63, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26982753

RESUMO

THE AIM: To present the molecular and clinical characteristics of three children with glucose deficiency syndrome, an inborn rare metabolic disease, caused by mutations in the SLC2A1 gene. MATERIAL AND METHODS: The investigation was carried out in three children: two girls and one boy showing symptoms of GLUT1 deficiency syndrome (GLUT1-DS). They were referred for SLC2A1 gene analysis. RESULTS: The presence of mutations in all of them was confirmed. Only point mutations were identified, two missenses p.Gly132Ser, p.Arg212Cys and amino acid insertion p.Ser_Val227insValProPro. In two cases the mutations arose de novo, one was heritable of paternal origin. CONCLUSIONS: GLUT1-DS shows high clinical variability. It should be suspected in children of any age presenting with single features or a combination of any form of intractable epilepsy with seizures of various types, movement disorders and paroxysmal events, especially triggered by exercise, exertion, or fasting, and any unexplainable neurological deterioration. The basic diagnostic hallmarks of GLUT1-DS are CSF hypoglycorrhachia and lowered CSF/Blood serum glucose ratio. This is why lumbar punction should be considered more frequently than it is in practice being performed nowadays. Antiepileptic drug treatment may be ineffective or even potentially detrimental. Early identification and molecular confirmation of GLUT1-DS is important, because this is a metabolic disorder and patients should as soon as possible primarily be treated with a ketogenic diet.


Assuntos
Epilepsia/genética , Transportador de Glucose Tipo 1/deficiência , Transportador de Glucose Tipo 1/genética , Criança , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Mutação , Doenças Neurodegenerativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA