Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1854(9): 1078-89, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25960279

RESUMO

Pharmacological chaperones are small compounds that correct the folding of mutant proteins, and represent a promising therapeutic strategy for misfolding diseases. We have performed a screening of 10,000 compounds searching for pharmacological chaperones of tyrosine hydroxylase (TH), the tetrahydrobiopterin (BH4)-dependent enzyme that catalyzes the rate-limiting step in the synthesis of catecholamines. A large number of compounds bound to human TH, isoform 1 (hTH1), but only twelve significantly protected wild-type (hTH1-wt) and mutant TH-R233H (hTH1-p.R202H), associated to the rare neurological disorder TH deficiency (THD), from time-dependent loss of activity. Three of them (named compounds 2, 4 and 5) were subjected to detailed characterization of their functional and molecular effects. Whereas compounds 2 and 4 had a characteristic pharmacological chaperone (stabilizing) effect, compound 5 protected the activity in a higher extent than expected from the low conformational stabilization exerted on hTH1. Compounds 4 and 5 were weak competitive inhibitors with respect to the cofactor BH4 and, as seen by electron paramagnetic resonance, they induced small changes to the first coordination sphere of the catalytic iron. Molecular docking also indicated active-site location with coordination to the iron through a pyrimidine nitrogen atom. Interestingly, compound 5 increased TH activity in cells transiently transfected with either hTH1-wt or the THD associated mutants p.L205P, p.R202H and p.Q381K without affecting the steady-state TH protein levels. This work revealed different mechanisms for the action of pharmacological chaperones and identifies a subtype of compounds that preserve TH activity by weak binding to the catalytic iron. This article is part of a Special Issue entitled: Cofactor-dependent proteins: Evolution, chemical diversity and bio-applications.


Assuntos
Tirosina 3-Mono-Oxigenase/química , Domínio Catalítico , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Simulação de Acoplamento Molecular , Conformação Proteica , Dobramento de Proteína , Tirosina 3-Mono-Oxigenase/metabolismo
2.
Brain ; 138(Pt 10): 2948-63, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26276013

RESUMO

Tyrosine hydroxylase catalyses the hydroxylation of L-tyrosine to l-DOPA, the rate-limiting step in the synthesis of catecholamines. Mutations in the TH gene encoding tyrosine hydroxylase are associated with the autosomal recessive disorder tyrosine hydroxylase deficiency, which manifests phenotypes varying from infantile parkinsonism and DOPA-responsive dystonia, also termed type A, to complex encephalopathy with perinatal onset, termed type B. We generated homozygous Th knock-in mice with the mutation Th-p.R203H, equivalent to the most recurrent human mutation associated with type B tyrosine hydroxylase deficiency (TH-p.R233H), often unresponsive to l-DOPA treatment. The Th knock-in mice showed normal survival and food intake, but hypotension, hypokinesia, reduced motor coordination, wide-based gate and catalepsy. This phenotype was associated with a gradual loss of central catecholamines and the serious manifestations of motor impairment presented diurnal fluctuation but did not improve with standard l-DOPA treatment. The mutant tyrosine hydroxylase enzyme was unstable and exhibited deficient stabilization by catecholamines, leading to decline of brain tyrosine hydroxylase-immunoreactivity in the Th knock-in mice. In fact the substantia nigra presented an almost normal level of mutant tyrosine hydroxylase protein but distinct absence of the enzyme was observed in the striatum, indicating a mutation-associated mislocalization of tyrosine hydroxylase in the nigrostriatal pathway. This hypomorphic mouse model thus provides understanding on pathomechanisms in type B tyrosine hydroxylase deficiency and a platform for the evaluation of novel therapeutics for movement disorders with loss of dopaminergic input to the striatum.


Assuntos
Encéfalo/metabolismo , Catecolaminas/metabolismo , Transtornos dos Movimentos/patologia , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Biopterinas/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Dopaminérgicos/uso terapêutico , Ingestão de Alimentos/genética , Feminino , Regulação da Expressão Gênica/genética , Técnicas de Introdução de Genes , Levodopa/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/genética , Transtornos dos Movimentos/tratamento farmacológico , Mutação/genética , Tiroxina/metabolismo
4.
Curr Drug Targets ; 17(13): 1515-26, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26953246

RESUMO

The aromatic amino acid hydroxylase (AAAH) enzyme family includes phenylalanine hydroxylase (PAH), tyrosine hydroxylase (TH) and the tryptophan hydroxylases (TPH1 and TPH2). All four members of the AAAH family require iron, dioxygen and the cofactor (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4) to hydroxylate their respective substrates. The AAAHs are involved in severe diseases; whereas polymorphisms and variants in the TPH genes are associated to neuropsychiatric disorders, mutations in PAH and TH are responsible for the autosomal recessive disorders phenylketonuria (PKU) and TH deficiency (THD), respectively. A large number of PKU and THD-causing mutations give rise to unstable, misfolded proteins. The degree of conformational instability correlates well with the severity of the patient phenotypes, underlying the relevance of searching for stabilizing compounds that may protect from loss of protein and activity in vivo. Supplementation with the cofactor BH4 exerts a multifactorial response in PAH, where one of the main mechanisms for the induced increase in PAH activity in BH4- responsive PKU patients appears to be a pharmacological chaperone effect. For TH the stabilizing effect of BH4 is less established. On the other hand, a number of compounds with pharmacological chaperone potential for PKU and THD mutants have been discovered. The stabilizing effect of these compounds has been established in vitro, in cells and in animal models. A recent study with TH has revealed different mechanisms for the action of pharmacological chaperones and identifies a subtype of compounds that preserve TH activity by weak binding to the catalytic iron. It is expected that synergistic combinations of different pharmacological chaperones could provide patient-tailored therapeutic options.


Assuntos
Biopterinas/análogos & derivados , Desenho de Fármacos , Chaperonas Moleculares/farmacologia , Animais , Biopterinas/metabolismo , Humanos , Mutação , Fenilalanina Hidroxilase/genética , Fenilalanina Hidroxilase/metabolismo , Dobramento de Proteína , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA