Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339058

RESUMO

Given the role of phosphatidylinositol 3,4,5-trisphosphate (PIP3) in modulating cellular processes such as proliferation, survival, and migration, we hypothesized its potential as a novel therapeutic agent for wound closure enhancement. In this study, PIP3 was examined in its free form or as a complex with cationic starch (Q-starch) as a carrier. The intracellular bioactivity and localization of free PIP3 and the Q-starch/PIP3 complexes were examined. Our results present the capability of Q-starch to form complexes with PIP3, facilitate its cellular membrane internalization, and activate intracellular paths leading to enhanced wound healing. Both free PIP3 and Q-starch/PIP3 complexes enhanced monolayer gap closure in scratch assays and induced amplified collagen production within HaCAT and BJ fibroblast cells. Western blot presented enhanced AKT activation by free or complexed PIP3 in BJ fibroblasts in which endogenous PIP3 production was pharmacologically inhibited. Furthermore, both free PIP3 and Q-starch/PIP3 complexes expedited wound closure in mice, after single or daily dermal injections into the wound margins. Free PIP3 and the Q-starch/PIP3 complexes inherently activated the AKT signaling pathway, which is responsible for crucial wound healing processes such as migration; this was also observed in wound assays in mice. PIP3 was identified as a promising molecule for enhancing wound healing, and its ability to circumvent PI3K inhibition suggests possible implications for chronic wound healing.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Cicatrização , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Cicatrização/fisiologia , Transdução de Sinais/fisiologia , Fibroblastos/metabolismo , Amido/metabolismo , Proliferação de Células/fisiologia
2.
J Control Release ; 284: 103-111, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-29870766

RESUMO

Psoriasis is a common, worldwide autoinflammatory, incurable skin disease. miR-197 has therapeutic potential for psoriasis since it can down-regulate the expression of both IL-22RA1 and IL-17RA, subunits of the receptors of IL-22 and IL-17, respectively, which are key cytokines in the disease. Although miR-197 has the potential to treat the disease, several inherent physical barrier properties of the skin challenge miRNA's delivery to the target skin cells. In the present study, we evaluated a therapeutic approach that combines the use of ultrasound (US) as a means to enhance skin permeability with quaternized starch (Q-starch) as an miRNA delivery carrier. This resulted in decreased expression of the miR-197 target proteins and in a significant reduction in the psoriatic activity markers. Our results demonstrate the potential of combinations of US and Q-starch/miR-197 complexes for the topical skin treatment of psoriasis.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , MicroRNAs/administração & dosagem , Psoríase/terapia , Amido/química , Administração Tópica , Animais , Humanos , Camundongos , Camundongos SCID , MicroRNAs/farmacocinética , MicroRNAs/uso terapêutico , Psoríase/patologia , Receptores de Interleucina/análise , Receptores de Interleucina-17/análise , Absorção Cutânea , Suínos , Ondas Ultrassônicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA