Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Eur J Nucl Med Mol Imaging ; 49(9): 3046-3060, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35169887

RESUMO

PURPOSE: Deep-learning-based attenuation correction (AC) for SPECT includes both indirect and direct approaches. Indirect approaches generate attenuation maps (µ-maps) from emission images, while direct approaches predict AC images directly from non-attenuation-corrected (NAC) images without µ-maps. For dedicated cardiac SPECT scanners with CZT detectors, indirect approaches are challenging due to the limited field-of-view (FOV). In this work, we aim to 1) first develop novel indirect approaches to improve the AC performance for dedicated SPECT; and 2) compare the AC performance between direct and indirect approaches for both general purpose and dedicated SPECT. METHODS: For dedicated SPECT, we developed strategies to predict truncated µ-maps from NAC images reconstructed with a small matrix, or full µ-maps from NAC images reconstructed with a large matrix using 270 anonymized clinical studies scanned on a GE Discovery NM/CT 570c SPECT/CT. For general purpose SPECT, we implemented direct and indirect approaches using 400 anonymized clinical studies scanned on a GE NM/CT 850c SPECT/CT. NAC images in both photopeak and scatter windows were input to predict µ-maps or AC images. RESULTS: For dedicated SPECT, the averaged normalized mean square error (NMSE) using our proposed strategies with full µ-maps was 1.20 ± 0.72% as compared to 2.21 ± 1.17% using the previous direct approaches. The polar map absolute percent error (APE) using our approaches was 3.24 ± 2.79% (R2 = 0.9499) as compared to 4.77 ± 3.96% (R2 = 0.9213) using direct approaches. For general purpose SPECT, the averaged NMSE of the predicted AC images using the direct approaches was 2.57 ± 1.06% as compared to 1.37 ± 1.16% using the indirect approaches. CONCLUSIONS: We developed strategies of generating µ-maps for dedicated cardiac SPECT with small FOV. For both general purpose and dedicated SPECT, indirect approaches showed superior performance of AC than direct approaches.


Assuntos
Aprendizado Profundo , Humanos , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos
2.
Sci Data ; 11(1): 254, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424079

RESUMO

Resection and whole brain radiotherapy (WBRT) are standard treatments for brain metastases (BM) but are associated with cognitive side effects. Stereotactic radiosurgery (SRS) uses a targeted approach with less side effects than WBRT. SRS requires precise identification and delineation of BM. While artificial intelligence (AI) algorithms have been developed for this, their clinical adoption is limited due to poor model performance in the clinical setting. The limitations of algorithms are often due to the quality of datasets used for training the AI network. The purpose of this study was to create a large, heterogenous, annotated BM dataset for training and validation of AI models. We present a BM dataset of 200 patients with pretreatment T1, T1 post-contrast, T2, and FLAIR MR images. The dataset includes contrast-enhancing and necrotic 3D segmentations on T1 post-contrast and peritumoral edema 3D segmentations on FLAIR. Our dataset contains 975 contrast-enhancing lesions, many of which are sub centimeter, along with clinical and imaging information. We used a streamlined approach to database-building through a PACS-integrated segmentation workflow.


Assuntos
Neoplasias Encefálicas , Humanos , Inteligência Artificial , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/secundário , Irradiação Craniana/efeitos adversos , Irradiação Craniana/métodos , Imageamento por Ressonância Magnética , Radiocirurgia
3.
Med Phys ; 50(1): 89-103, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36048541

RESUMO

PURPOSE: Myocardial perfusion imaging (MPI) using single-photon emission-computed tomography (SPECT) is widely applied for the diagnosis of cardiovascular diseases. In clinical practice, the long scanning procedures and acquisition time might induce patient anxiety and discomfort, motion artifacts, and misalignments between SPECT and computed tomography (CT). Reducing the number of projection angles provides a solution that results in a shorter scanning time. However, fewer projection angles might cause lower reconstruction accuracy, higher noise level, and reconstruction artifacts due to reduced angular sampling. We developed a deep-learning-based approach for high-quality SPECT image reconstruction using sparsely sampled projections. METHODS: We proposed a novel deep-learning-based dual-domain sinogram synthesis (DuDoSS) method to recover full-view projections from sparsely sampled projections of cardiac SPECT. DuDoSS utilized the SPECT images predicted in the image domain as guidance to generate synthetic full-view projections in the sinogram domain. The synthetic projections were then reconstructed into non-attenuation-corrected and attenuation-corrected (AC) SPECT images for voxel-wise and segment-wise quantitative evaluations in terms of normalized mean square error (NMSE) and absolute percent error (APE). Previous deep-learning-based approaches, including direct sinogram generation (Direct Sino2Sino) and direct image prediction (Direct Img2Img), were tested in this study for comparison. The dataset used in this study included a total of 500 anonymized clinical stress-state MPI studies acquired on a GE NM/CT 850 scanner with 60 projection angles following the injection of 99m Tc-tetrofosmin. RESULTS: Our proposed DuDoSS generated more consistent synthetic projections and SPECT images with the ground truth than other approaches. The average voxel-wise NMSE between the synthetic projections by DuDoSS and the ground-truth full-view projections was 2.08% ± 0.81%, as compared to 2.21% ± 0.86% (p < 0.001) by Direct Sino2Sino. The averaged voxel-wise NMSE between the AC SPECT images by DuDoSS and the ground-truth AC SPECT images was 1.63% ± 0.72%, as compared to 1.84% ± 0.79% (p < 0.001) by Direct Sino2Sino and 1.90% ± 0.66% (p < 0.001) by Direct Img2Img. The averaged segment-wise APE between the AC SPECT images by DuDoSS and the ground-truth AC SPECT images was 3.87% ± 3.23%, as compared to 3.95% ± 3.21% (p = 0.023) by Direct Img2Img and 4.46% ± 3.58% (p < 0.001) by Direct Sino2Sino. CONCLUSIONS: Our proposed DuDoSS is feasible to generate accurate synthetic full-view projections from sparsely sampled projections for cardiac SPECT. The synthetic projections and reconstructed SPECT images generated from DuDoSS are more consistent with the ground-truth full-view projections and SPECT images than other approaches. DuDoSS can potentially enable fast data acquisition of cardiac SPECT.


Assuntos
Aprendizado Profundo , Hominidae , Humanos , Animais , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Coração/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Processamento de Imagem Assistida por Computador/métodos
4.
ArXiv ; 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37744461

RESUMO

Resection and whole brain radiotherapy (WBRT) are the standards of care for the treatment of patients with brain metastases (BM) but are often associated with cognitive side effects. Stereotactic radiosurgery (SRS) involves a more targeted treatment approach and has been shown to avoid the side effects associated with WBRT. However, SRS requires precise identification and delineation of BM. While many AI algorithms have been developed for this purpose, their clinical adoption has been limited due to poor model performance in the clinical setting. Major reasons for non-generalizable algorithms are the limitations in the datasets used for training the AI network. The purpose of this study was to create a large, heterogenous, annotated BM dataset for training and validation of AI models to improve generalizability. We present a BM dataset of 200 patients with pretreatment T1, T1 post-contrast, T2, and FLAIR MR images. The dataset includes contrast-enhancing and necrotic 3D segmentations on T1 post-contrast and whole tumor (including peritumoral edema) 3D segmentations on FLAIR. Our dataset contains 975 contrast-enhancing lesions, many of which are sub centimeter, along with clinical and imaging feature information. We used a streamlined approach to database-building leveraging a PACS-integrated segmentation workflow.

5.
ArXiv ; 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37396600

RESUMO

Clinical monitoring of metastatic disease to the brain can be a laborious and timeconsuming process, especially in cases involving multiple metastases when the assessment is performed manually. The Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) guideline, which utilizes the unidimensional longest diameter, is commonly used in clinical and research settings to evaluate response to therapy in patients with brain metastases. However, accurate volumetric assessment of the lesion and surrounding peri-lesional edema holds significant importance in clinical decision-making and can greatly enhance outcome prediction. The unique challenge in performing segmentations of brain metastases lies in their common occurrence as small lesions. Detection and segmentation of lesions that are smaller than 10 mm in size has not demonstrated high accuracy in prior publications. The brain metastases challenge sets itself apart from previously conducted MICCAI challenges on glioma segmentation due to the significant variability in lesion size. Unlike gliomas, which tend to be larger on presentation scans, brain metastases exhibit a wide range of sizes and tend to include small lesions. We hope that the BraTS-METS dataset and challenge will advance the field of automated brain metastasis detection and segmentation.

6.
Front Neurosci ; 16: 860208, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312024

RESUMO

Purpose: Personalized interpretation of medical images is critical for optimum patient care, but current tools available to physicians to perform quantitative analysis of patient's medical images in real time are significantly limited. In this work, we describe a novel platform within PACS for volumetric analysis of images and thus development of large expert annotated datasets in parallel with radiologist performing the reading that are critically needed for development of clinically meaningful AI algorithms. Specifically, we implemented a deep learning-based algorithm for automated brain tumor segmentation and radiomics extraction, and embedded it into PACS to accelerate a supervised, end-to- end workflow for image annotation and radiomic feature extraction. Materials and methods: An algorithm was trained to segment whole primary brain tumors on FLAIR images from multi-institutional glioma BraTS 2021 dataset. Algorithm was validated using internal dataset from Yale New Haven Health (YHHH) and compared (by Dice similarity coefficient [DSC]) to radiologist manual segmentation. A UNETR deep-learning was embedded into Visage 7 (Visage Imaging, Inc., San Diego, CA, United States) diagnostic workstation. The automatically segmented brain tumor was pliable for manual modification. PyRadiomics (Harvard Medical School, Boston, MA) was natively embedded into Visage 7 for feature extraction from the brain tumor segmentations. Results: UNETR brain tumor segmentation took on average 4 s and the median DSC was 86%, which is similar to published literature but lower than the RSNA ASNR MICCAI BRATS challenge 2021. Finally, extraction of 106 radiomic features within PACS took on average 5.8 ± 0.01 s. The extracted radiomic features did not vary over time of extraction or whether they were extracted within PACS or outside of PACS. The ability to perform segmentation and feature extraction before radiologist opens the study was made available in the workflow. Opening the study in PACS, allows the radiologists to verify the segmentation and thus annotate the study. Conclusion: Integration of image processing algorithms for tumor auto-segmentation and feature extraction into PACS allows curation of large datasets of annotated medical images and can accelerate translation of research into development of personalized medicine applications in the clinic. The ability to use familiar clinical tools to revise the AI segmentations and natively embedding the segmentation and radiomic feature extraction tools on the diagnostic workstation accelerates the process to generate ground-truth data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA