RESUMO
While primarily found in endo-lysosomal compartments, the cysteine protease legumain can also translocate to the cell surface if stabilized by the interaction with the RGD-dependent integrin receptor αVß3. Previously, it has been shown that legumain expression is inversely related to BDNF-TrkB activity. Here we show that legumain can conversely act on TrkB-BDNF by processing the C-terminal linker region of the TrkB ectodomain in vitro. Importantly, when in complex with BDNF, TrkB was not cleaved by legumain. Legumain-processed TrkB was still able to bind BDNF, suggesting a potential scavenger function of soluble TrkB towards BDNF. The work thus presents another mechanistic link explaining the reciprocal TrkB signaling and δ-secretase activity of legumain, with relevance for neurodegeneration.
Assuntos
Fator Neurotrófico Derivado do Encéfalo , Cisteína Proteases , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptor trkB/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Cisteína Proteases/metabolismo , Transdução de SinaisRESUMO
Side-chain-to-side-chain cyclization is frequently used to stabilize the α-helical conformation of short peptides. In a previous study, we incorporated a lactam bridge between the side chains of Lys-i and Asp-i+4 in the nonapeptide 1Y, cyclo-(2,6)-(Ac-VKRLQDLQY-NH2 ), an artificial ligand of the inhibitor of DNA binding and cell differentiation (ID) protein with antiproliferative activity on cancer cells. Herein, we show that only the cyclized five-residue segment adopts a helical turn whereas the C-terminal residues remain flexible. Moreover, we present nine 1Y analogs arising from different combinations of hydrophobic residues (leucine, isoleucine, norleucine, valine, and tyrosine) at positions 1, 4, 7, and 9. All cyclopeptides except one build a lactam-bridged helical turn; however, residue-4 reveals less helix character than the neighboring Arg-3 and Gln-5, especially with residue-4 being isoleucine, valine, and tyrosine. Surprisingly, only two cyclopeptides exhibit helix propagation until the C-terminus, whereas the others share a remarkable outward tilting of the backbone carbonyl of the lactam-bridged Asp-6 (>40° deviation from the orientation parallel to the helix axis), which prevents the formation of the H-bond between Arg-3 CO and residue-7 NH: As a result, the propagation of the helix beyond the lactam-bridged sequence becomes unfavorable. We conclude that, depending on the amino-acid sequence, the lactam bridge between Lys-i and Asp-i+4 can stabilize a helical turn but deviations from the ideal helix geometry are possible: Indeed, besides the outward tilting of the backbone carbonyls, the residues per turn increased from 3.6 (typical of a regular α-helix) to 4.2, suggesting a partial helix unwinding.
Assuntos
Isoleucina , Lactamas , Dicroísmo Circular , Lactamas/química , Peptídeos/química , Peptídeos Cíclicos/química , Conformação Proteica , Estrutura Secundária de Proteína , Tirosina , ValinaRESUMO
Streptococcal pyrogenic exotoxin B (SpeB) is a cysteine protease expressed during group A streptococcal infection that represents a major virulence factor. Although subject to several studies, its role during infection is still under debate, and its proteolytic properties remain insufficiently characterized. Here, we revisited this protease through a set of complementary approaches relying on state of-the-art HPLC-MS methods. After conceiving an efficient protocol to recombinantly express SpeB, the zymogen of the protease and its activation were characterized. Employing proteome-derived peptide libraries, a strong preference for hydrophobic and aromatic residues at P2 alongside negatively charged amino acids at P3' to P6' was revealed. To identify relevant in vivo substrates, native proteins were obtained from monocytic secretome and plasma to assess their cleavage under physiological conditions. Besides corroborating our findings concerning specificity, more than 200 cleaved proteins were identified, including proteins of the extracellular matrix, proteins of the immune system, and proteins involved in inflammation. Finally, the cleavage of IgG subclasses was studied in detail. This study precisely depicts the proteolytic properties of SpeB and provides a library of potential host substrates, including their exact cleavage positions, as a valuable source for further research to unravel the role of SpeB during streptococcal infection.