Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Biochem ; 120(1): 77-92, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30272816

RESUMO

Higher levels of nonprotein amino acid homocysteine (Hcy), that is, hyperhomocysteinemia (HHcy) (~5% of general population) has been associated with severe vasculopathies in different organs; however, precise molecular mechanism(s) as to how HHcy plays havoc with body's vascular networks are largely unknown. Interventional modalities have not proven beneficial to counter multifactorial HHcy's effects on the vascular system. An ancient Indian form of exercise called 'yoga' causes transient ischemia as a result of various body postures however the cellular mechanisms are not clear. We discuss a novel perspective wherein we argue that application of remote ischemic conditioning (RIC) could, in fact, deliver anticipated results to patients who are suffering from chronic vascular dysfunction due to HHcy. RIC is the mechanistic phenomenon whereby brief episodes of ischemia-reperfusion events are applied to distant tissues/organs; that could potentially offer a powerful tool in mitigating chronic lethal ischemia in target organs during HHcy condition via simultaneous reduction of inflammation, oxidative and endoplasmic reticulum stress, extracellular matrix remodeling, fibrosis, and angiogenesis. We opine that during ischemic conditioning our organs cross talk by releasing cellular messengers in the form of exosomes containing messenger RNAs, circular RNAs, anti-pyroptotic factors, protective cytokines like musclin, transcription factors, small molecules, anti-inflammatory, antiapoptotic factors, antioxidants, and vasoactive gases. All these could help mobilize the bone marrow-derived stem cells (having tissue healing properties) to target organs. In that context, we argue that RIC could certainly play a savior's role in an unfortunate ischemic or adverse event in people who have higher levels of the circulating Hcy in their systems.


Assuntos
Homocisteína/metabolismo , Hiper-Homocisteinemia/metabolismo , Hiper-Homocisteinemia/terapia , Reperfusão/métodos , Doenças Vasculares/metabolismo , Doenças Vasculares/terapia , Animais , Citocinas/metabolismo , Estresse do Retículo Endoplasmático , Homocisteína S-Metiltransferase/metabolismo , Humanos , Hiper-Homocisteinemia/complicações , Inflamação/metabolismo , Isquemia/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Doenças Vasculares/complicações
2.
Can J Physiol Pharmacol ; 97(6): 463-472, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30444648

RESUMO

Circular RNAs (circRNAs) are being hailed as a newly rediscovered class of covalently closed transcripts that are produced via alternative, noncanonical pre-mRNA back-splicing events. These single-stranded RNA molecules have been identified in organisms ranging from the worm (Cortés-López et al. 2018. BMC Genomics, 19: 8; Ivanov et al. 2015. Cell Rep. 10: 170-177) to higher eukaryotes (Yang et al. 2017. Cell Res. 27: 626-641) to plants (Li et al. 2017. Biochem. Biophys. Res. Commun. 488: 382-386). At present, research on circRNAs is an active area because of their diverse roles in development, health, and diseases. Partly because their circularity makes them resistant to degradation, they hold great promise as unique biomarkers for ocular and central nervous system (CNS) disorders. We believe that further work on their applications could help in developing them as "first-in-class" diagnostics, therapeutics, and prognostic targets for numerous eye conditions. Interestingly, many circRNAs play key roles in transcriptional regulation by acting as miRNAs sponges, meaning that they serve as master regulators of RNA and protein expression. Since the retina is an extension of the brain and is part of the CNS, we highlight the current state of circRNA biogenesis, properties, and function and we review the crucial roles that they play in the eye and the brain. We also discuss their regulatory roles as miRNA sponges, regulation of their parental genes or linear mRNAs, translation into micropeptides or proteins, and responses to cellular stress. We posit that future advances will provide newer insights into the fields of RNA metabolism in general and diseases of the aging eye and brain in particular. Furthermore, in keeping pace with the rapidly evolving discipline of RNA"omics"-centered metabolism and to achieve uniformity among researchers, we recently introduced the term "cromics" (circular ribonucleic acids based omics) (Singh et al. 2018. Exp. Eye Res. 174: 80-92).


Assuntos
Encéfalo/metabolismo , Olho/metabolismo , Regulação da Expressão Gênica , Mamíferos/genética , RNA/genética , RNA/metabolismo , Animais , Humanos , RNA/biossíntese , RNA Circular
3.
Exp Eye Res ; 174: 80-92, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29803556

RESUMO

Cystathionine-ß-synthase (CBS) gene encodes L-serine hydrolyase which catalyzes ß-reaction to condense serine with homocysteine (Hcy) by pyridoxal-5'-phosphate helps to form cystathionine which in turn is converted to cysteine. CBS resides at the intersection of transmethylation, transsulfuration, and remethylation pathways, thus lack of CBS fundamentally blocks Hcy degradation; an essential step in glutathione synthesis. Redox homeostasis, free-radical detoxification and one-carbon metabolism (Methionine-Hcy-Folate cycle) require CBS and its deficiency leads to hyperhomocysteinemia (HHcy) causing retinovascular thromboembolism and eye-lens dislocation along with vascular cognitive impairment and dementia. HHcy results in retinovascular, coronary, cerebral and peripheral vessels' dysfunction and how it causes metabolic dysregulation predisposing patients to serious eye conditions remains unknown. HHcy orchestrates inflammation and redox imbalance via epigenetic remodeling leading to neurovascular pathologies. Although circular RNAs (circRNAs) are dominant players regulating their parental genes' expression dynamics, their importance in ocular biology has not been appreciated. Progress in gene-centered analytics via improved microarray and bioinformatics are enabling dissection of genomic pathways however there is an acute under-representation of circular RNAs in ocular disorders. This study undertook circRNAs' analysis in the eyes of CBS deficient mice identifying a pool of 12532 circRNAs, 74 exhibited differential expression profile, ∼27% were down-regulated while most were up-regulated (∼73%). Findings also revealed several microRNAs that are specific to each circRNA suggesting their roles in HHcy induced ocular disorders. Further analysis of circRNAs helped identify novel parental genes that seem to influence certain eye disease phenotypes.


Assuntos
Cistationina beta-Sintase/genética , Hiper-Homocisteinemia/metabolismo , Subluxação do Cristalino/metabolismo , RNA/metabolismo , Animais , Cistationina beta-Sintase/metabolismo , Epigenômica , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/fisiologia , RNA Circular
4.
Curr Eye Res ; 44(3): 287-293, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30369271

RESUMO

PURPOSE: To characterize the global profile of circular RNAs (circRNAs) and their differential expression levels in homocysteine (Hcy)-treated ARPE-19 cells, a line of human retinal pigment epithelial (RPE) cells. MATERIALS AND METHODS: We treated ARPE-19 cells with and without Hcy to investigate the influence of Hcy on circRNA expression levels using dedicated human circRNA microarrays. RESULTS: A total of 12,233 circRNAs were identified out of them 54 were differentially expressed (17 were down-regulated, and 37 were up-regulated) with a fold change >2.0 (p < 0.05) in Hcy-treated versus untreated cells. CONCLUSIONS: To our knowledge, this is the first report profiling circRNAs in human RPE cells post-Hcy treatment mimicking hyperhomocysteinemic (HHcy) conditions that negatively affect retinal biology and vision. These findings are of potential clinical significance as they will help understand Hcy metabolism and HHcy-mediated diseases and identify potential diagnostic and therapeutic targets for eye diseases that are caused by elevated Hcy concentrations.


Assuntos
Regulação da Expressão Gênica/fisiologia , Homocisteína/farmacologia , RNA Circular/genética , Epitélio Pigmentado da Retina/efeitos dos fármacos , Linhagem Celular , Epigenômica , Perfilação da Expressão Gênica , Humanos , MicroRNAs/genética , Epitélio Pigmentado da Retina/metabolismo , Regulação para Cima
5.
Int J Ophthalmol ; 11(5): 881-887, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29862191

RESUMO

Age-related macular degeneration (AMD) is a leading cause of blindness and is becoming a global crisis since affected people will increase to 288 million by 2040. Genetics, age, diabetes, gender, obesity, hypertension, race, hyperopia, iris-color, smoking, sun-light and pyroptosis have varying roles in AMD, but oxidative stress-induced inflammation remains a significant driver of pathobiology. Eye is a unique organ as it contains a remarkable oxygen-gradient that generates reactive oxygen species (ROS) which upregulates inflammatory pathways. ROS becomes a source of functional and morphological impairments in retinal pigment epithelium (RPE), endothelial cells and retinal ganglion cells. Reports demonstrated that hydrogen sulfide (H2S) acts as a signaling molecule and that it may treat ailments. Therefore, we propose a novel hypothesis that H2S may restore homeostasis in the eyes thereby reducing damage caused by oxidative injury and inflammation. Since H2S has been shown to be a powerful antioxidant because of its free-radicals' inhibition properties in addition to its beneficial effects in age-related conditions, therefore, patients may benefit from H2S salubrious effects not only by minimizing their oxidant and inflammatory injuries to retina but also by lowering retinal glutamate excitotoxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA