Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Annu Rev Phys Chem ; 72: 165-188, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33395546

RESUMO

Including both environmental and vibronic effects is important for accurate simulation of optical spectra, but combining these effects remains computationally challenging. We outline two approaches that consider both the explicit atomistic environment and the vibronic transitions. Both phenomena are responsible for spectral shapes in linear spectroscopy and the electronic evolution measured in nonlinear spectroscopy. The first approach utilizes snapshots of chromophore-environment configurations for which chromophore normal modes are determined. We outline various approximations for this static approach that assumes harmonic potentials and ignores dynamic system-environment coupling. The second approach obtains excitation energies for a series of time-correlated snapshots. This dynamic approach relies on the accurate truncation of the cumulant expansion but treats the dynamics of the chromophore and the environment on equal footing. Both approaches show significant potential for making strides toward more accurate optical spectroscopy simulations of complex condensed phase systems.

2.
J Chem Phys ; 153(4): 044127, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32752702

RESUMO

First-principles modeling of nonlinear optical spectra in the condensed phase is highly challenging because both environment and vibronic interactions can play a large role in determining spectral shapes and excited state dynamics. Here, we compute two dimensional electronic spectroscopy (2DES) signals based on a cumulant expansion of the energy gap fluctuation operator, with specific focus on analyzing mode mixing effects introduced by the Duschinsky rotation and the role of the third order term in the cumulant expansion for both model and realistic condensed phase systems. We show that for a harmonic model system, the third order cumulant correction captures effects introduced by a mismatch in curvatures of ground and excited state potential energy surfaces, as well as effects of mode mixing. We also demonstrate that 2DES signals can be accurately reconstructed from purely classical correlation functions using quantum correction factors. We then compute nonlinear optical spectra for the Nile red and methylene blue chromophores in solution, assessing the third order cumulant contribution for realistic systems. We show that the third order cumulant correction is strongly dependent on the treatment of the solvent environment, revealing the interplay between environmental polarization and the electronic-vibrational coupling.

3.
Biochem Mol Biol Educ ; 52(4): 386-402, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38411374

RESUMO

Students at Minority-Serving Institutions (MSIs) faced significant hardships while trying to learn through emergency remote teaching (ERT) during the COVID-19 pandemic. Our research aims to investigate if science, technology, engineering, and mathematics (STEM) instructors thought about and enacted more learner-centered teaching practices to alleviate some of this stress encountered by their students. Using semi-structured interviews and classroom observations, we utilized inductive and deductive qualitative research methods to examine two questions: (1) To what extent were STEM instructor's perceived pedagogical changes learner-centered during ERT?; and (2) To what extent were STEM instructor's teaching behaviors and discourse practices learner-centered during ERT? Our findings revealed that during ERT, STEM instructors described using a variety of pedagogical changes that we identified as learner-centered under the Weimer framework, including ideas such as enacting flexible late policies and increased usage of formative assessment. Interestingly, we found that many of these learned-centered changes were happening outside of the classroom. Classroom observations assessing instructor behaviors and discourse demonstrated that STEM instructors enacted practices that aligned with Weimer's five constructs of learner-centered teaching. Our research highlights implications of learner-centered teaching practices for STEM instructors as well as researchers.


Assuntos
COVID-19 , Educação a Distância , Pandemias , SARS-CoV-2 , Ciência , COVID-19/epidemiologia , Humanos , Ciência/educação , Estudantes/psicologia , Ensino , Docentes , Engenharia/educação , Aprendizagem , Tecnologia/educação
4.
J Phys Chem B ; 125(44): 12214-12227, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34726915

RESUMO

The environment surrounding a chromophore can dramatically affect the energy absorption and relaxation process, as manifested in optical spectra. Simulations of nonlinear optical spectroscopy, such as two-dimensional electronic spectroscopy (2DES) and transient absorption (TA), will be influenced by the computational model of the environment. We here compare a fixed point charge molecular mechanics model and a quantum mechanical (QM) model of the environment in computed 2DES and TA spectra of Nile red in water and the chromophore of photoactive yellow protein (PYP) in water and protein environments. In addition to simulating these nonlinear optical spectra, we directly juxtapose the computed excitation energy correlation function to the dynamic Stokes shift function often used to analyze environment dynamics. Overall, we find that for the three systems studied here the mutual electronic polarization provided by the QM environment manifests in broader 2DES signals, as well as a larger reorganization energy and a larger static Stokes shift due to stronger coupling between the chromophore and the environment.


Assuntos
Simulação de Dinâmica Molecular , Água , Eletrônica , Teoria Quântica , Análise Espectral
5.
J Phys Chem B ; 124(3): 531-543, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31880454

RESUMO

Accurate spectral densities are necessary for computing realistic exciton dynamics and nonlinear optical spectra of chromophores in condensed-phase environments, including multichromophore pigment-protein systems. However, due to the significant computational cost of computing spectral densities from first principles, requiring many thousands of excited-state calculations, most simulations of realistic systems rely on treating the environment as fixed-point charges. Here, using a number of representative systems ranging from solvated chromophores to the photoactive yellow protein (PYP), we demonstrate that the quantum mechanical (QM) electronic polarization of the environment is key to obtaining accurate spectral densities and line shapes within the cumulant framework. We show that the QM environment can enhance or depress the coupling of fast chromophore degrees of freedom to the energy gap, altering the electronic-vibrational coupling and the resulting vibronic progressions in the absorption spectrum. In analyzing the physical origin of peaks in the spectral density, we identify vibrational modes that couple the electron and the hole as being particularly sensitive to the QM screening of the environment. For PYP, we reveal the need for careful determination of the appropriate QM region to obtain reliable spectral densities. Our results indicate that the QM polarization of the environment can be crucial not just for excitation energies but also for electronic-vibrational coupling in complex systems with implications for the correct modeling of linear and nonlinear optical spectroscopy in the condensed phase as well as energy transfer in pigment-protein complexes.


Assuntos
Proteínas de Bactérias/química , Corantes/química , Fotorreceptores Microbianos/química , Eletricidade Estática , Ácidos Cumáricos/química , Elétrons , Imidazolinas/química , Oxazinas/química , Teoria Quântica , Espectrofotometria , Tiofenos/química , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA