Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Biol Chem ; 286(32): 28567-73, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21673113

RESUMO

Mycobacterium tuberculosis adenosine 5'-phosphosulfate reductase (APR) catalyzes the first committed step in sulfate reduction for the biosynthesis of cysteine and is essential for survival in the latent phase of tuberculosis infection. The reaction catalyzed by APR involves the nucleophilic attack by conserved Cys-249 on adenosine 5'-phosphosulfate, resulting in a covalent S-sulfocysteine intermediate that is reduced in subsequent steps by thioredoxin to yield the sulfite product. Cys-249 resides on a mobile active site lid at the C terminus, within a K(R/T)ECG(L/I)H motif. Owing to its strict conservation among sulfonucleotide reductases and its proximity to the active site cysteine, it has been suggested that His-252 plays a key role in APR catalysis, specifically as a general base to deprotonate Cys-249. Using site-directed mutagenesis, we have changed His-252 to an alanine residue and analyzed the effect of this mutation on the kinetic parameters, pH rate profile, and ionization of Cys-249 of APR. Interestingly, our data demonstrate that His-252 does not perturb the pK(a) of Cys-249 or play a direct role in rate-limiting chemical steps of the reaction. Rather, we show that His-252 enhances substrate affinity via interaction with the α-phosphate and the endocyclic ribose oxygen. These findings were further supported by isothermal titration calorimetry to provide a thermodynamic profile of ligand-protein interactions. From an applied standpoint, our study suggests that small-molecules targeting residues in the dynamic C-terminal segment, particularly His-252, may lead to inhibitors with improved binding affinity.


Assuntos
Proteínas de Bactérias/química , Histidina/química , Mycobacterium tuberculosis/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Motivos de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Domínio Catalítico , Histidina/genética , Histidina/metabolismo , Mutagênese Sítio-Dirigida , Mycobacterium tuberculosis/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo
2.
J Biol Chem ; 286(2): 1216-26, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21075841

RESUMO

Mycobacterium tuberculosis adenosine 5'-phosphosulfate reductase (MtAPR) is an iron-sulfur protein and a validated target to develop new antitubercular agents, particularly for the treatment of latent infection. The enzyme harbors a [4Fe-4S](2+) cluster that is coordinated by four cysteinyl ligands, two of which are adjacent in the amino acid sequence. The iron-sulfur cluster is essential for catalysis; however, the precise role of the [4Fe-4S] cluster in APR remains unknown. Progress in this area has been hampered by the failure to generate a paramagnetic state of the [4Fe-4S] cluster that can be studied by electron paramagnetic resonance spectroscopy. Herein, we overcome this limitation and report the EPR spectra of MtAPR in the [4Fe-4S](+) state. The EPR signal is rhombic and consists of two overlapping S = ½ species. Substrate binding to MtAPR led to a marked increase in the intensity and resolution of the EPR signal and to minor shifts in principle g values that were not observed among a panel of substrate analogs, including adenosine 5'-diphosphate. Using site-directed mutagenesis, in conjunction with kinetic and EPR studies, we have also identified an essential role for the active site residue Lys-144, whose side chain interacts with both the iron-sulfur cluster and the sulfate group of adenosine 5'-phosphosulfate. The implications of these findings are discussed with respect to the role of the iron-sulfur cluster in the catalytic mechanism of APR.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Proteínas Ferro-Enxofre , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Domínio Catalítico , Cristalização , Desenho de Fármacos , Ferricianetos/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Modelos Químicos , Mutagênese Sítio-Dirigida , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Estrutura Terciária de Proteína , Especificidade por Substrato
3.
Cell Chem Biol ; 26(5): 711-723.e14, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30880155

RESUMO

The transcription factor Max is a basic-helix-loop-helix leucine zipper (bHLHLZ) protein that forms homodimers or interacts with other bHLHLZ proteins, including Myc and Mxd proteins. Among this dynamic network of interactions, the Myc/Max heterodimer has crucial roles in regulating normal cellular processes, but its transcriptional activity is deregulated in a majority of human cancers. Despite this significance, the arsenal of high-quality chemical probes to interrogate these proteins remains limited. We used small molecule microarrays to identify compounds that bind Max in a mechanistically unbiased manner. We discovered the asymmetric polycyclic lactam, KI-MS2-008, which stabilizes the Max homodimer while reducing Myc protein and Myc-regulated transcript levels. KI-MS2-008 also decreases viable cancer cell growth in a Myc-dependent manner and suppresses tumor growth in vivo. This approach demonstrates the feasibility of modulating Max with small molecules and supports altering Max dimerization as an alternative approach to targeting Myc.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Lactamas/farmacologia , Compostos Policíclicos/farmacologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Repressoras/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Transcrição Gênica/efeitos dos fármacos , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Linhagem Celular , Dimerização , Modelos Animais de Doenças , Humanos , Lactamas/síntese química , Lactamas/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias/tratamento farmacológico , Compostos Policíclicos/síntese química , Compostos Policíclicos/uso terapêutico , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ratos , Proteínas Repressoras/química , Proteínas Repressoras/genética , Bibliotecas de Moléculas Pequenas/uso terapêutico , Raios Ultravioleta
4.
Org Lett ; 8(3): 479-82, 2006 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-16435864

RESUMO

[reaction: see text]. The reaction of gem-difluoropropargyl electrophiles with Grignard reagents is complicated by the inherent difficulty of executing nucleophilic substitutions on a CF2 group, and the facile formation of carbenoid intermediates arising from alpha-elimination of fluoride. In the presence of an excess amount of a copper salt, a Grignard reagent reacts with gem-difluoropropargyl bromide via an S(N)2' mechanism to produce gem-difluoroallene in high yield. If desired, the resulting difluoroallene can undergo a second nucleophilic attack on the CF2 terminus to yield a trisubstituted monofluoroallene through an addition-elimination mechanism.

5.
ACS Chem Biol ; 11(7): 1844-51, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27064299

RESUMO

Unbiased binding assays involving small-molecule microarrays were used to identify compounds that display unique patterns of selectivity among members of the zinc-dependent histone deacetylase family of enzymes. A novel, hydroxyquinoline-containing compound, BRD4354, was shown to preferentially inhibit activity of HDAC5 and HDAC9 in vitro. Inhibition of deacetylase activity appears to be time-dependent and reversible. Mechanistic studies suggest that the compound undergoes zinc-catalyzed decomposition to an ortho-quinone methide, which covalently modifies nucleophilic cysteines within the proteins. The covalent nature of the compound-enzyme interaction has been demonstrated in experiments with biotinylated probe compound and with electrospray ionization-mass spectrometry.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Animais , Linhagem Celular , Humanos
6.
Curr Opin Chem Biol ; 18: 21-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24534749

RESUMO

High-throughput and unbiased binding assays have proven useful in probe discovery for a myriad of biomolecules, including targets of unknown structure or function and historically challenging target classes. Over the past decade, a number of novel formats for executing large-scale binding assays have been developed and used successfully in probe discovery campaigns. Here we review the use of one such format, the small-molecule microarray (SMM), as a tool for discovering protein-small molecule interactions. This review will briefly highlight selected recent probe discoveries using SMMs as well as novel uses of SMMs in profiling applications.


Assuntos
Análise em Microsséries/métodos , Bibliotecas de Moléculas Pequenas/análise , Biomarcadores/metabolismo , Sobrevivência Celular , Humanos , Ligação Proteica , Proteínas/química , Proteínas/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo
7.
ACS Chem Biol ; 7(2): 306-15, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22023093

RESUMO

Assimilatory sulfate reduction supplies prototrophic organisms with reduced sulfur that is required for the biosynthesis of all sulfur-containing metabolites, including cysteine and methionine. The reduction of sulfate requires its activation via an ATP-dependent activation to form adenosine-5'-phosphosulfate (APS). Depending on the species, APS can be reduced directly to sulfite by APS reductase (APR) or undergo a second phosphorylation to yield 3'-phosphoadenosine-5'-phosphosulfate (PAPS), the substrate for PAPS reductase (PAPR). These essential enzymes have no human homologue, rendering them attractive targets for the development of novel antibacterial drugs. APR and PAPR share sequence and structure homology as well as a common catalytic mechanism, but the enzymes are distinguished by two features, namely, the amino acid sequence of the phosphate-binding loop (P-loop) and an iron-sulfur cofactor in APRs. On the basis of the crystal structures of APR and PAPR, two P-loop residues are proposed to determine substrate specificity; however, this hypothesis has not been tested. In contrast to this prevailing view, we report here that the P-loop motif has a modest effect on substrate discrimination. Instead, by means of metalloprotein engineering, spectroscopic, and kinetic analyses, we demonstrate that the iron-sulfur cluster cofactor enhances APS reduction by nearly 1000-fold, thereby playing a pivotal role in substrate specificity and catalysis. These findings offer new insights into the evolution of this enzyme family and extend the known functions of protein-bound iron-sulfur clusters.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/química , Proteínas Ferro-Enxofre/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Oxirredutases/química , Motivos de Aminoácidos , Proteínas de Bactérias/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Modelos Moleculares , Oxirredutases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Estrutura Terciária de Proteína , Especificidade por Substrato
8.
J Med Chem ; 52(17): 5485-95, 2009 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-19678707

RESUMO

Mycobacterium tuberculosis adenosine-5'-phosphosulfate (APS) reductase is an iron-sulfur protein and a validated target to develop new antitubercular agents, particularly for the treatment of latent infection. To facilitate the development of potent and specific inhibitors of APS reductase, we have probed the molecular determinants that underlie binding and specificity through a series of substrate and product analogues. Our study highlights the importance of specific substitutent groups for substrate binding and provides functional evidence for ligand-specific conformational states. An active site model has been developed for M. tuberculosis APS reductase that is in accord with the results presented here as well as prior structural data reported for Pseudomonas aeruginosa APS reductase and related enzymes. This model illustrates the functional features required for the interaction of APS reductase with a ligand and provides a pharmacological roadmap for the rational design of small molecules as potential inhibitors of APS reductase present in human pathogens, including M. tuberculosis.


Assuntos
Mycobacterium tuberculosis/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Domínio Catalítico , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Ligantes , Magnésio/farmacologia , Modelos Moleculares , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/antagonistas & inibidores , Pseudomonas aeruginosa/enzimologia , Eletricidade Estática , Especificidade por Substrato
9.
J Med Chem ; 51(21): 6627-30, 2008 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-18855373

RESUMO

Tuberculosis is among the world's deadliest infectious diseases. APS reductase catalyzes the first committed step in bacterial sulfate reduction and is a validated drug target against latent tuberculosis infection. We performed a virtual screening to identify APSR inhibitors. These inhibitors represent the first non-phosphate-based molecules to inhibit APSR. Common chemical features lay the foundation for the development of agents that could shorten the duration of chemotherapy by targeting the latent stage of TB infection.


Assuntos
Inibidores Enzimáticos/química , Mycobacterium tuberculosis/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Ligantes , Modelos Moleculares , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA