Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 20(1): 306, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611317

RESUMO

BACKGROUND: Gibberellin (GA) is one of the most essential phytohormones that modulate plant growth and development. Jute (Corchorus sp.) is the second most important source of bast fiber. Our result has shown that exogenous GA can positively regulate jute height and related characteristics which mean increasing endogenous GA production will help to get a jute variety with improved characteristics. However, genes involved in jute GA biosynthesis have not been analyzed precisely. RESULTS: Genome-wide analysis identified twenty-two candidate genes involved in jute GA biosynthesis pathway. Among them, four genes- CoCPS, CoKS, CoKO and CoKAO work in early steps. Seven CoGA20oxs, three CoGA3oxs, and eight GA2oxs genes work in the later steps. These genes were characterized through phylogenetic, motif, gene structure, and promoter region analysis along with chromosomal localization. Spatial gene expression analysis revealed that 11 GA oxidases were actively related to jute GA production and four of them were marked as key regulators based on their expression level. All the biosynthesis genes both early and later steps showed tissue specificity. GA oxidase genes were under feedback regulation whereas early steps genes were not subject to such regulation. CONCLUSION: Enriched knowledge about jute GA biosynthesis pathway and genes will help to increase endogenous GA production in jute by changing the expression level of key regulator genes. CoGA20ox7, CoGA3ox2, CoGA2ox3, and CoGA2ox5 may be the most important genes for GA production.


Assuntos
Corchorus/genética , Corchorus/metabolismo , Giberelinas/metabolismo , Ontologia Genética , Genes de Plantas , Estudo de Associação Genômica Ampla , Giberelinas/química , Modelos Moleculares , Anotação de Sequência Molecular , Filogenia , Regiões Promotoras Genéticas
2.
Sci Rep ; 10(1): 5174, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32198430

RESUMO

Jute fibre is the second most important fibre next to cotton. It is obtained from the bark of plant through microbial retting process. Here we report optimized microbial retting protocol that can lower retting period and produce high fibre quality. A total of 451 bacterial colonies have been isolated from five jute retting water samples in Bangladesh. Higher pectinolytic bacterial isolates were predominant in the later stage of jute retting. Out of these, 168 isolates have been screened by both semi-quantitative and quantitative pectinase, xylanase and cellulase enzyme assay. Among them, 144 isolates have been selected on the basis of extra cellular enzyme activity of these three enzymes. 16 s ribosomal gene sequencing analysis identified 2 phyla- Firmicutis (80.55%) and Proteobacteria (19.45%). To check the synergistic and antagonistic effect 10 selected isolates were tested in 167 different combinations. Three best combinations were identified that lowered retting period from 18-21 days to 10 days producing high quality fibre in both laboratory and field trial. This improved retting technology can be adopted in industrial scale for the production of quality jute fibre in a controlled condition in reduced water quantity without polluting the environment.


Assuntos
Corchorus/metabolismo , Fibras na Dieta/metabolismo , Poligalacturonase/metabolismo , Bactérias/genética , Bangladesh , Corchorus/microbiologia , Fibras na Dieta/microbiologia , Manufaturas/microbiologia , Têxteis/microbiologia
3.
Nat Plants ; 3: 16223, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-28134914

RESUMO

Jute (Corchorus sp.) is one of the most important sources of natural fibre, covering ∼80% of global bast fibre production1. Only Corchorus olitorius and Corchorus capsularis are commercially cultivated, though there are more than 100 Corchorus species2 in the Malvaceae family. Here we describe high-quality draft genomes of these two species and their comparisons at the functional genomics level to support tailor-designed breeding. The assemblies cover 91.6% and 82.2% of the estimated genome sizes for C. olitorius and C. capsularis, respectively. In total, 37,031 C. olitorius and 30,096 C. capsularis genes are identified, and most of the genes are validated by cDNA and RNA-seq data. Analyses of clustered gene families and gene collinearity show that jute underwent shared whole-genome duplication ∼18.66 million years (Myr) ago prior to speciation. RNA expression analysis from isolated fibre cells reveals the key regulatory and structural genes involved in fibre formation. This work expands our understanding of the molecular basis of fibre formation laying the foundation for the genetic improvement of jute.


Assuntos
Corchorus/genética , Genoma de Planta , Corchorus/metabolismo , Genes de Plantas , Genômica , Filogenia , Melhoramento Vegetal , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA