Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(1): e2310727120, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38150499

RESUMO

Intrinsically disordered regions (IDR) and short linear motifs (SLiMs) play pivotal roles in the intricate signaling networks governed by phosphatases and kinases. B56δ (encoded by PPP2R5D) is a regulatory subunit of protein phosphatase 2A (PP2A) with long IDRs that harbor a substrate-mimicking SLiM and multiple phosphorylation sites. De novo missense mutations in PPP2R5D cause intellectual disabilities (ID), macrocephaly, Parkinsonism, and a broad range of neurological symptoms. Our single-particle cryo-EM structures of the PP2A-B56δ holoenzyme reveal that the long, disordered arms at the B56δ termini fold against each other and the holoenzyme core. This architecture suppresses both the phosphatase active site and the substrate-binding protein groove, thereby stabilizing the enzyme in a closed latent form with dual autoinhibition. The resulting interface spans over 190 Šand harbors unfavorable contacts, activation phosphorylation sites, and nearly all residues with ID-associated mutations. Our studies suggest that this dynamic interface is coupled to an allosteric network responsive to phosphorylation and altered globally by mutations. Furthermore, we found that ID mutations increase the holoenzyme activity and perturb the phosphorylation rates, and the severe variants significantly increase the mitotic duration and error rates compared to the normal variant.


Assuntos
Proteína Fosfatase 2 , Proteína Fosfatase 2/metabolismo , Jordânia , Fosforilação , Mutação , Holoenzimas/genética , Holoenzimas/metabolismo
2.
J Biol Chem ; 299(9): 105154, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37572851

RESUMO

Genetic germline variants of PPP2R5D (encoding: phosphoprotein phosphatase 2 regulatory protein 5D) result in PPP2R5D-related disorder (Jordan's Syndrome), which is characterized by intellectual disability, hypotonia, seizures, macrocephaly, autism spectrum disorder, and delayed motor skill development. The disorder originates from de novo single nucleotide mutations, generating missense variants that act in a dominant manner. Pathogenic mutations altering 13 different amino acids have been identified, with the E198K variant accounting for ∼40% of reported cases. However, the generation of a heterozygous E198K variant cell line to study the molecular effects of the pathogenic mutation has been challenging. Here, we use CRISPR-PRIME genomic editing to introduce a transition (c.592G>A) in a single PPP2R5D allele in HEK293 cells, generating E198K-heterozygous lines to complement existing E420K variant lines. We generate global protein and phosphorylation profiles of WT, E198K, and E420K cell lines and find unique and shared changes between variants and WT cells in kinase- and phosphatase-controlled signaling cascades. We observed ribosomal protein S6 (RPS6) hyperphosphorylation as a shared signaling alteration, indicative of increased ribosomal protein S6-kinase activity. Treatment with rapamycin or an RPS6-kinase inhibitor (LY2584702) suppressed RPS6 phosphorylation in both, suggesting upstream activation of mTORC1/p70S6K. Intriguingly, our data suggests ERK-dependent activation of mTORC1 in both E198K and E420K variant cells, with additional AKT-mediated mTORC1 activation in the E420K variant. Thus, although upstream activation of mTORC1 differs between PPP2R5D-related disorder genotypes, inhibition of mTORC1 or RPS6 kinases warrants further investigation as potential therapeutic strategies for patients.


Assuntos
Anormalidades Múltiplas , Humanos , Transtorno do Espectro Autista , Células HEK293 , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosforilação , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteômica , Proteína S6 Ribossômica/genética , Proteína S6 Ribossômica/metabolismo , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia
3.
Circ Res ; 129(12): e215-e233, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34702049

RESUMO

RATIONALE: Vascular smooth muscle cells (SMCs) exhibit remarkable plasticity and can undergo dedifferentiation upon pathological stimuli associated with disease and interventions. OBJECTIVE: Although epigenetic changes are critical in SMC phenotype switching, a fundamental regulator that governs the epigenetic machineries regulating the fate of SMC phenotype has not been elucidated. METHODS AND RESULTS: Using SMCs, mouse models, and human atherosclerosis specimens, we found that FAK (focal adhesion kinase) activation elicits SMC dedifferentiation by stabilizing DNMT3A (DNA methyltransferase 3A). FAK in SMCs is activated in the cytoplasm upon serum stimulation in vitro or vessel injury and active FAK prevents DNMT3A from nuclear FAK-mediated degradation. However, pharmacological or genetic FAK catalytic inhibition forced FAK nuclear localization, which reduced DNMT3A protein via enhanced ubiquitination and proteasomal degradation. Reduced DNMT3A protein led to DNA hypomethylation in contractile gene promoters, which increased SMC contractile protein expression. RNA-sequencing identified SMC contractile genes as a foremost upregulated group by FAK inhibition from injured femoral artery samples compared with vehicle group. DNMT3A knockdown in injured arteries reduced DNA methylation and enhanced contractile gene expression supports the notion that nuclear FAK-mediated DNMT3A degradation via E3 ligase TRAF6 (TNF [tumor necrosis factor] receptor-associated factor 6) drives differentiation of SMCs. Furthermore, we observed that SMCs of human atherosclerotic lesions exhibited decreased nuclear FAK, which was associated with increased DNMT3A levels and decreased contractile gene expression. CONCLUSIONS: This study reveals that nuclear FAK induced by FAK catalytic inhibition specifically suppresses DNMT3A expression in injured vessels resulting in maintaining SMC differentiation by promoting the contractile gene expression. Thus, FAK inhibitors may provide a new treatment option to block SMC phenotypic switching during vascular remodeling and atherosclerosis.


Assuntos
Desdiferenciação Celular , Proteínas Contráteis/genética , Metilação de DNA , Quinase 1 de Adesão Focal/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Células Cultivadas , Proteínas Contráteis/metabolismo , DNA Metiltransferase 3A/genética , DNA Metiltransferase 3A/metabolismo , Quinase 1 de Adesão Focal/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/fisiologia , Proteólise , Ubiquitinação , Regulação para Cima
4.
J Biol Chem ; 296: 100313, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33482199

RESUMO

Functional genomic approaches have facilitated the discovery of rare genetic disorders and improved efforts to decipher their underlying etiology. PPP2R5D-related disorder is an early childhood onset condition characterized by intellectual disability, hypotonia, autism-spectrum disorder, macrocephaly, and dysmorphic features. The disorder is caused by de novo single nucleotide changes in PPP2R5D, which generate heterozygous dominant missense variants. PPP2R5D is known to encode a B'-type (B'56δ) regulatory subunit of a PP2A-serine/threonine phosphatase. To help elucidate the molecular mechanisms altered in PPP2R5D-related disorder, we used a CRISPR-single-base editor to generate HEK-293 cells in which a single transition (c.1258G>A) was introduced into one allele, precisely recapitulating a clinically relevant E420K variant. Unbiased quantitative proteomic and phosphoproteomic analyses of endogenously expressed proteins revealed heterozygous-dominant changes in kinase/phosphatase signaling. These data combined with orthogonal validation studies revealed a previously unrecognized interaction of PPP2R5D with AKT in human cells, leading to constitutively active AKT-mTOR signaling, increased cell size, and uncoordinated cellular growth in E420K-variant cells. Rapamycin reduced cell size and dose-dependently reduced RPS6 phosphorylation in E420K-variant cells, suggesting that inhibition of mTOR1 can suppress both the observed RPS6 hyperphosphorylation and increased cell size. Together, our findings provide a deeper understanding of PPP2R5D and insight into how the E420K-variant alters signaling networks influenced by PPP2R5D. Our comprehensive approach, which combines precise genome editing, isobaric tandem mass tag labeling of peptides generated from endogenously expressed proteins, and concurrent liquid chromatography-mass spectrometry (LC-MS3), also provides a roadmap that can be used to rapidly explore the etiologies of additional genetic disorders.


Assuntos
Doenças Genéticas Inatas/genética , Predisposição Genética para Doença , Proteína Fosfatase 2/genética , Proteômica , Serina-Treonina Quinases TOR/genética , Transtorno Autístico/genética , Transtorno Autístico/patologia , Sistemas CRISPR-Cas/genética , Doenças Genéticas Inatas/patologia , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Megalencefalia/genética , Megalencefalia/patologia , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Proto-Oncogênicas c-akt/genética
5.
FASEB J ; 34(2): 3179-3196, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31916625

RESUMO

ISOC is a cation current permeating the ISOC channel. In pulmonary endothelial cells, ISOC activation leads to formation of inter-endothelial cell gaps and barrier disruption. The immunophilin FK506-binding protein 51 (FKBP51), in conjunction with the serine/threonine protein phosphatase 5C (PPP5C), inhibits ISOC . Free PPP5C assumes an autoinhibitory state, which has low "basal" catalytic activity. Several S100 protein family members bind PPP5C increasing PPP5C catalytic activity in vitro. One of these family members, S100A6, exhibits a calcium-dependent translocation to the plasma membrane. The goal of this study was to determine whether S100A6 activates PPP5C in pulmonary endothelial cells and contributes to ISOC inhibition by the PPP5C-FKBP51 axis. We observed that S100A6 activates PPP5C to dephosphorylate tau T231. Following ISOC activation, cytosolic S100A6 translocates to the plasma membrane and interacts with the TRPC4 subunit of the ISOC channel. Global calcium entry and ISOC are decreased by S100A6 in a PPP5C-dependent manner and by FKBP51 in a S100A6-dependent manner. Further, calcium entry-induced endothelial barrier disruption is decreased by S100A6 dependent upon PPP5C, and by FKBP51 dependent upon S100A6. Overall, these data reveal that S100A6 plays a key role in the PPP5C-FKBP51 axis to inhibit ISOC and protect the endothelial barrier against calcium entry-induced disruption.


Assuntos
Sinalização do Cálcio , Proteínas de Ciclo Celular/metabolismo , Células Endoteliais/metabolismo , Proteína A6 Ligante de Cálcio S100/metabolismo , Animais , Células Cultivadas , Endotélio Vascular/citologia , Pulmão/irrigação sanguínea , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Ligação Proteica , Transporte Proteico , Ratos , Canais de Cátion TRPC/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo
6.
J Am Chem Soc ; 139(49): 17703-17706, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29156132

RESUMO

Selective inhibitors for each serine/threonine phosphatase (PPP) are essential to investigate the biological actions of PPPs and to guide drug development. Biologically diverse organisms (e.g., cyanobacteria, dinoflagellates, beetles) produce structurally distinct toxins that are catalytic inhibitors of PPPs. However, most toxins exhibit little selectivity, typically inhibiting multiple family members with similar potencies. Thus, the use of these toxins as chemical tools to study the relationship between individual PPPs and their biological substrates, and how disruptions in these relationships contributes to human disease, is severely limited. Here, we show that tautomycetin (TTN) is highly selective for a single PPP, protein phosphatase 1 (PP1/PPP1C). Our structure of the PP1:TTN complex reveals that PP1 selectivity is defined by a covalent bond between TTN and a PP1-specific cysteine residue, Cys127. Together, these data provide key molecular insights needed for the development of novel probes targeting single PPPs, especially PP1.


Assuntos
Inibidores Enzimáticos/farmacologia , Furanos/metabolismo , Proteína Fosfatase 1/antagonistas & inibidores , Proteína Fosfatase 1/metabolismo , Sequência de Aminoácidos , Humanos , Lipídeos , Modelos Moleculares , Proteína Fosfatase 1/química , Especificidade por Substrato
7.
J Biol Chem ; 289(7): 4219-32, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24371145

RESUMO

Serine/threonine protein phosphatase 5 (PP5, PPP5C) is known to interact with the chaperonin heat shock protein 90 (HSP90) and is involved in the regulation of multiple cellular signaling cascades that control diverse cellular processes, such as cell growth, differentiation, proliferation, motility, and apoptosis. Here, we identify PP5 in stable complexes with extracellular signal-regulated kinases (ERKs). Studies using mutant proteins reveal that the formation of PP5·ERK1 and PP5·ERK2 complexes partially depends on HSP90 binding to PP5 but does not require PP5 or ERK1/2 activity. However, PP5 and ERK activity regulates the phosphorylation state of Raf1 kinase, an upstream activator of ERK signaling. Whereas expression of constitutively active Rac1 promotes the assembly of PP5·ERK1/2 complexes, acute activation of ERK1/2 fails to influence the phosphatase-kinase interaction. Introduction of oncogenic HRas (HRas(V12)) has no effect on PP5-ERK1 binding but selectively decreases the interaction of PP5 with ERK2, in a manner that is independent of PP5 and MAPK/ERK kinase (MEK) activity, yet paradoxically requires ERK2 activity. Additional studies conducted with oncogenic variants of KRas4B reveal that KRas(L61), but not KRas(V12), also decreases the PP5-ERK2 interaction. The expression of wild type HRas or KRas proteins fails to reduce PP5-ERK2 binding, indicating that the effect is specific to HRas(V12) and KRas(L61) gain-of-function mutations. These findings reveal a novel, differential responsiveness of PP5-ERK1 and PP5-ERK2 interactions to select oncogenic Ras variants and also support a role for PP5·ERK complexes in regulating the feedback phosphorylation of PP5-associated Raf1.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glicoproteínas/metabolismo , Complexos Multienzimáticos/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo , Substituição de Aminoácidos , Animais , Bovinos , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/genética , Glicoproteínas/genética , Humanos , Complexos Multienzimáticos/genética , Mutação de Sentido Incorreto , Fosforilação , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Ratos , Proteínas rac1 de Ligação ao GTP/genética , Proteínas ras/genética
8.
Front Cell Dev Biol ; 11: 1141804, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377738

RESUMO

PP2A-serine/threonine protein phosphatases function as heterotrimeric holoenzymes, composed of a common scaffold (A-subunit encoded by PPP2R1A/PPP2R1B), a common catalytic (C-subunit encoded by PPP2CA/PPP2CB), and one of many variable regulatory (B) subunits. The site of phosphoprotein phosphatase (PPP) hydrolysis features a bimetal system (M1/M2), an associated bridge hydroxide [W1(OH-)], and a highly-conserved core sequence. In the presumptive common mechanism, the phosphoprotein's seryl/threonyl phosphate coordinates the M1/M2 system, W1(OH-) attacks the central P atom, rupturing the antipodal bond, and simultaneously, a histidine/aspartate tandem protonates the exiting seryl/threonyl alkoxide. Based on studies of PPP5C, a conserved arginine proximal to M1 is also expected to bind the substrate's phosphate group in a bidentate fashion. However, in PP2A isozymes, the role of the arginine (Arg89) in hydrolysis is not clear because two independent structures for PP2A(PPP2R5C) and PP2A(PPP2R5D) show that Arg89 engages in a weak salt bridge at the B:C interface. These observations raise the question of whether hydrolysis proceeds with or without direct involvement of Arg89. The interaction of Arg89 with B:Glu198 in PP2A(PPP2R5D) is significant because the pathogenic E198K variant of B56δ is associated with irregular protein phosphorylation levels and consequent developmental disorders (Jordan's Syndrome; OMIM #616355). In this study, we perform quantum-based hybrid [ONIOM(UB3LYP/6-31G(d):UPM7)] calculations on 39-residue models of the PP2A(PPP2R5D)/pSer (phosphoserine) system to estimate activation barriers for hydrolysis in the presence of bidentate Arg89-substrate binding and when Arg89 is otherwise engaged in the salt-bridge interaction. Our solvation-corrected results yield ΔH‡ ≈ ΔE‡ = +15.5 kcal/mol for the former case, versus +18.8 kcal/mol for the latter, indicating that bidentate Arg89-substrate binding is critical for optimal catalytic function of the enzyme. We speculate that PP2A(PPP2R5D) activity is suppressed by B:Glu198 sequestration of C:Arg89 under native conditions, whereas the PP2A(PPP2R5D)-holoenzyme containing the E198K variant has a positively-charged lysine in this position that alters normal function.

9.
Am J Respir Cell Mol Biol ; 47(4): 464-73, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22592921

RESUMO

Corticosteroid insensitivity (CSI) represents a profound challenge in managing patients with asthma. We recently demonstrated that short exposure of airway smooth muscle cells (ASMCs) to proasthmatic cytokines drastically reduced their responsiveness to glucocorticoids (GCs), an effect that was partially mediated via interferon regulatory factor-1, suggesting the involvement of additional mechanisms (Am J Respir Cell Mol Biol 2008;38:463-472). Although GC receptor (GR) can be phosphorylated at multiple serines in the N-terminal region, the major phosphorylation sites critical for GR transcriptional activity are serines 211 (Ser211) and 226 (Ser226). We tested the novel hypothesis that cytokine-induced CSI in ASMCs is due to an impaired GR phosphorylation. Cells were treated with TNF-α (10 ng/ml) and IFN-γ (500 UI/ml) for 6 hours and/or fluticasone (100 nm) added 2 hours before. GR was constitutively phosphorylated at Ser226 but not at Ser211 residues. Cytokines dramatically suppressed fluticasone-induced phosphorylation of GR on Ser211 but not on Ser226 residues while increasing the expression of Ser/Thr protein phosphatase (PP)5 but not that of PP1 or PP2A. Transfection studies using a reporter construct containing GC responsive elements showed that the specific small interfering RNA-induced mRNA knockdown of PP5, but not that of PP1 or PP2A, partially prevented the cytokine suppressive effects on GR-meditated transactivation activity. Similarly, cytokines failed to inhibit GC-induced GR-Ser211 phosphorylation when expression of PP5 was suppressed. We propose that the novel mechanism that proasthmatic cytokine-induced CSI in ASMCs is due, in part, to PP5-mediated impairment of GR-Ser211 phosphorylation.


Assuntos
Citocinas/fisiologia , Miócitos de Músculo Liso/enzimologia , Proteínas Nucleares/fisiologia , Fosfoproteínas Fosfatases/fisiologia , Processamento de Proteína Pós-Traducional , Receptores de Glucocorticoides/metabolismo , Sistema Respiratório/citologia , Androstadienos/farmacologia , Células Cultivadas , Fluticasona , Técnicas de Silenciamento de Genes , Glucocorticoides/farmacologia , Glucocorticoides/fisiologia , Humanos , Mutação de Sentido Incorreto , Miócitos de Músculo Liso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Interferência de RNA , Receptores de Glucocorticoides/genética
10.
J Biol Chem ; 286(47): 40413-22, 2011 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-21921034

RESUMO

PP5 is a ubiquitously expressed Ser/Thr protein phosphatase. High levels of PP5 have been observed in human cancers, and constitutive PP5 overexpression aids tumor progression in mouse models of tumor development. However, PP5 is highly conserved among species, and the roles of PP5 in normal tissues are not clear. Here, to help evaluate the biological actions of PP5, a Cre/loxP-conditional mouse line was generated. In marked contrast to the early embryonic lethality associated with the genetic disruption of other PPP family phosphatases (e.g. PP2A and PP4), intercrosses with mouse lines that ubiquitously express Cre recombinase starting early in development (e.g. MeuCre40 and ACTB-Cre) produced viable and fertile PP5-deficient mice. Phenotypic differences caused by the total disruption of PP5 were minor, suggesting that small molecule inhibitors of PP5 will not have widespread systemic toxicity. Examination of roles for PP5 in fibroblasts generated from PP5-deficient embryos (PP5(-/-) mouse embryonic fibroblasts) confirmed some known roles and identified new actions for PP5. PP5(-/-) mouse embryonic fibroblasts demonstrated increased sensitivity to UV light, hydroxyurea, and camptothecin, which are known activators of ATR (ataxia-telangiectasia and Rad3-related) kinase. Further study revealed a previously unrecognized role for PP5 downstream of ATR activation in a UV light-induced response. The genetic disruption of PP5 is associated with enhanced and prolonged phosphorylation of a single serine (Ser-345) on Chk1, increased phosphorylation of the p53 tumor suppressor protein (p53) at serine 18, and increased p53 protein levels. A comparable role for PP5 in the regulation of Chk1 phosphorylation was also observed in human cells.


Assuntos
Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Fosfoproteínas Fosfatases/deficiência , Fosfoproteínas Fosfatases/genética , Proteínas Quinases/metabolismo , Raios Ultravioleta , Actinas/genética , Alelos , Animais , Blastocisto/metabolismo , Cruzamento , Linhagem Celular , Quinase 1 do Ponto de Checagem , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Células HeLa , Humanos , Hidroxiureia/farmacologia , Integrases/genética , Masculino , Camundongos , Proteínas Nucleares/metabolismo , Fenótipo , Fosfoproteínas Fosfatases/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Fosforilação/efeitos da radiação , Regiões Promotoras Genéticas/genética , Proteínas Quinases/química , Receptores de Neuropeptídeo Y/metabolismo , Serina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fosfatases cdc25/metabolismo
11.
Proteomics ; 11(8): 1508-16, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21360678

RESUMO

Affinity purification coupled to mass spectrometry (AP-MS) represents a powerful and proven approach for the analysis of protein-protein interactions. However, the detection of true interactions for proteins that are commonly considered background contaminants is currently a limitation of AP-MS. Here using spectral counts and the new statistical tool, Significance Analysis of INTeractome (SAINT), true interaction between the serine/threonine protein phosphatase 5 (PP5) and a chaperonin, heat shock protein 90 (Hsp90), is discerned. Furthermore, we report and validate a new interaction between PP5 and an Hsp90 adaptor protein, stress-induced phosphoprotein 1 (STIP1; HOP). Mutation of PP5, replacing key basic amino acids (K97A and R101A) in the tetratricopeptide repeat (TPR) region known to be necessary for the interactions with Hsp90, abolished both the known interaction of PP5 with cell division cycle 37 homolog and the novel interaction of PP5 with stress-induced phosphoprotein 1. Taken together, the results presented demonstrate the usefulness of label-free quantitative proteomics and statistical tools to discriminate between noise and true interactions, even for proteins normally considered as background contaminants.


Assuntos
Proteínas Nucleares/análise , Fosfoproteínas Fosfatases/análise , Mapeamento de Interação de Proteínas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Chaperoninas/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Espectrometria de Massas , Mutação , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Ligação Proteica , Proteômica
12.
Basic Res Cardiol ; 106(3): 421-30, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21399968

RESUMO

Cooling the ischemic heart by just a few degrees protects it from infarction without affecting its mechanical function, but the mechanism of this protection is unknown. We investigated whether signal transduction pathways might be involved in the anti-infarct effect of mild hypothermia (35°C). Isolated rabbit hearts underwent 30 min of coronary artery occlusion/2 h of reperfusion. They were either maintained at 38.5°C or cooled to 35°C just before and only during ischemia. Infarct size was measured. The effects of the protein kinase C inhibitor chelerythrine, the nitric oxide synthase inhibitor N (ω)-nitro-L: -arginine methyl ester (L: -NAME), the phosphatidylinositol 3-kinase antagonist wortmannin, or either of the mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitors PD98059 or U0126 on cooling's protection were examined. Myocardial ATP assays were performed and the level of phosphorylation of extracellular signal-regulated kinase (ERK) and MEK was examined by western blotting. To investigate an effect of cooling on protein phosphatase (PPase), a PPase inhibitor cantharidin was tested in the infarct model and the effect of mild hypothermia on PP2A activity in vitro was measured. Infarct size was 34.4 ± 2.2% of the ischemic zone in normothermic (38.5°C) hearts, but only 15.6 ± 8.7% in hearts cooled to 35°C during ischemia. Mechanical function was unaffected. Neither chelerythrine, L: -NAME, nor wortmannin had any effect, but both PD98059 and U0126 completely eliminated protection. Ischemia rather than reperfusion was the critical time when ERK had to be active to realize protection. Phosphorylation of ERK and MEK fell during normothermic ischemia, but during hypothermic ischemia phosphorylation of ERK remained high while that of MEK was increased. Cooling only slightly delayed the rate at which ATP fell during ischemia, and ERK inhibition did not affect that attenuation suggesting ATP preservation was unrelated to protection. Cantharidin, like cooling, also protected during ischemia but not at reperfusion, and its protection was dependent on ERK phosphorylation. However, mild hypothermia had a negligible effect on PP2A activity in an in vitro assay. Hence, mild hypothermia preserves ERK and MEK activity during ischemia which somehow protects the heart. While a PPase inhibitor mimicked cooling's protection, a direct effect of cooling on PP2A could not be demonstrated.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hipotermia Induzida , Isquemia Miocárdica/metabolismo , Transdução de Sinais/fisiologia , Animais , Western Blotting , Inibidores Enzimáticos/farmacologia , Isquemia Miocárdica/prevenção & controle , Coelhos , Transdução de Sinais/efeitos dos fármacos
13.
Proc Natl Acad Sci U S A ; 105(43): 16578-83, 2008 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-18946034

RESUMO

Human DNA polymerase eta (pol eta) can replicate across UV-induced pyrimidine dimers, and defects in the gene encoding pol eta result in a syndrome called xeroderma pigmentosum variant (XP-V). XP-V patients are prone to the development of cancer in sun-exposed areas, and cells derived from XP-V patients demonstrate increased sensitivity to UV radiation and a higher mutation rate compared with wild-type cells. pol eta has been shown to replicate across a wide spectrum of DNA lesions introduced by environmental or chemotherapeutic agents, or during nucleotide starvation, suggesting that the biological roles for pol eta are not limited to repair of UV-damaged DNA. The high error rate of pol eta requires that its intracellular activity be tightly regulated. Here, we show that the phosphorylation of pol eta increased after UV irradiation, and that treatment with caffeine, siRNA against ATR, or an inhibitor of PKC (calphostin C), reduced the accumulation of pol eta at stalled replication forks after UV irradiation or treatment with cisplatin and gemcitabine. Site-specific mutagenesis (S587A and T617A) of pol eta at two putative PKC phosphorylation sites located in the protein-protein interaction domain prevented nuclear foci formation induced by UV irradiation or treatment with gemcitabine/cisplatin. In addition, XP-V cell lines stably expressing either the S587A or T617A mutant form of pol eta were more sensitive to UV radiation and gemcitabine/cisplatin than control cells expressing wild-type pol eta. These results suggest that phosphorylation is one mechanism by which the cellular activity of pol eta is regulated.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Cafeína/farmacologia , Proteínas de Ciclo Celular/genética , Linhagem Celular , Dano ao DNA , DNA Polimerase Dirigida por DNA/genética , Humanos , Mutação de Sentido Incorreto , Fosforilação/efeitos da radiação , Proteína Quinase C , Proteínas Serina-Treonina Quinases/genética , RNA Interferente Pequeno/farmacologia , Raios Ultravioleta
14.
JCI Insight ; 6(9)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33986191

RESUMO

Activating mutations in fibroblast growth factor receptor 3 (FGFR3) and inactivating mutations in the natriuretic peptide receptor 2 (NPR2) guanylyl cyclase both result in decreased production of cyclic GMP in chondrocytes and severe short stature, causing achondroplasia (ACH) and acromesomelic dysplasia, type Maroteaux, respectively. Previously, we showed that an NPR2 agonist BMN-111 (vosoritide) increases bone growth in mice mimicking ACH (Fgfr3Y367C/+). Here, because FGFR3 signaling decreases NPR2 activity by dephosphorylating the NPR2 protein, we tested whether a phosphatase inhibitor (LB-100) could enhance BMN-111-stimulated bone growth in ACH. Measurements of cGMP production in chondrocytes of living tibias, and of NPR2 phosphorylation in primary chondrocytes, showed that LB-100 counteracted FGF-induced dephosphorylation and inactivation of NPR2. In ex vivo experiments with Fgfr3Y367C/+ mice, the combination of BMN-111 and LB-100 increased bone length and cartilage area, restored chondrocyte terminal differentiation, and increased the proliferative growth plate area, more than BMN-111 alone. The combination treatment also reduced the abnormal elevation of MAP kinase activity in the growth plate of Fgfr3Y367C/+ mice and improved the skull base anomalies. Our results provide a proof of concept that a phosphatase inhibitor could be used together with an NPR2 agonist to enhance cGMP production as a therapy for ACH.


Assuntos
Acondroplasia/genética , Desenvolvimento Ósseo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Peptídeo Natriurético Tipo C/análogos & derivados , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Piperazinas/farmacologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptores do Fator Natriurético Atrial/agonistas , Animais , Doenças do Desenvolvimento Ósseo/genética , Cartilagem/efeitos dos fármacos , Cartilagem/crescimento & desenvolvimento , Diferenciação Celular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Sinergismo Farmacológico , Lâmina de Crescimento/efeitos dos fármacos , Lâmina de Crescimento/crescimento & desenvolvimento , Camundongos , Peptídeo Natriurético Tipo C/farmacologia , Tamanho do Órgão , Fosforilação , Cultura Primária de Células , Receptores do Fator Natriurético Atrial/genética , Tíbia/efeitos dos fármacos , Tíbia/crescimento & desenvolvimento
15.
J Org Chem ; 75(22): 7505-13, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-20669916

RESUMO

Full details of the total synthesis of phostriecin (2), the assignment of its relative and absolute stereochemistry, and the resultant structural reassignment of the natural product previously represented as sultriecin (1), a phosphate versus sulfate monoester, are detailed. Studies with authentic material confirmed that phostriecin, but not sultriecin, is an effective and selective inhibitor of protein phosphatase 2A (PP2A) defining a mechanism of action responsible for its antitumor activity. The extension of the studies to the synthesis and evaluation of a series of key synthetic analogues is disclosed that highlights the importance of the natural product phosphate monoester (vs sulfate or free alcohol, both inactive and >250-fold), the α,ß-unsaturated lactone (12-fold), and the hydrophobic Z,Z,E-triene tail (C12-C22, ca. 200-fold) including the unique importance of its unsaturation (50-fold, and no longer PP2A selective).


Assuntos
Alcenos/química , Alcinos/química , Antineoplásicos/química , Antineoplásicos/síntese química , Lactonas/síntese química , Organofosfatos/química , Organofosfatos/síntese química , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/química , Humanos , Lactonas/química , Pironas , Estereoisomerismo
16.
Biochim Biophys Acta ; 1782(4): 259-70, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18280813

RESUMO

Ser/Thr protein phosphatase 5 (PP5) regulates several signaling-cascades that suppress growth and/or facilitate apoptosis in response to genomic stress. The expression of PP5 is responsive to hypoxia inducible factor-1 (HIF-1) and estrogen, which have both been linked to the progression of human breast cancer. Still, it is not clear if PP5 plays a role in the development of human cancer. Here, immunostaining of breast cancer tissue-microarrays (TMAs) revealed a positive correlation between PP5 over-expression and ductal carcinoma in situ (DCIS; P value 0.0028), invasive ductal carcinoma (IDC; P value 0.012) and IDC with metastases at the time of diagnosis (P value 0.0001). In a mouse xenograft model, the constitutive over-expression of PP5 was associated with an increase in the rate of tumor growth. In a MCF-7 cell culture model over-expression correlated with both an increase in the rate of proliferation and protection from cell death induced by oxidative stress, UVC-irradiation, adriamycin, and vinblastine. PP5 over-expression had no apparent effect on the sensitivity of MCF-7 cells to taxol or rapamycin. Western analysis of extracts from cells over-expressing PP5 revealed a decrease in the phosphorylation of known substrates for PP5. Together, these studies indicate that elevated levels of PP5 protein occur in human breast cancer and suggest that PP5 over-expression may aid tumor progression.


Assuntos
Neoplasias da Mama/enzimologia , Carcinoma Ductal de Mama/enzimologia , Carcinoma Intraductal não Infiltrante/enzimologia , Animais , Morte Celular , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Humanos , Camundongos , Camundongos Nus , Proteínas Nucleares , Estresse Oxidativo , Fosfoproteínas Fosfatases , Treonina , Fatores de Tempo , Raios Ultravioleta , Regulação para Cima , Vimblastina/farmacologia
17.
J Pharmacol Exp Ther ; 331(1): 45-53, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19592665

RESUMO

Fostriecin and cytostatin are structurally related natural inhibitors of serine/threonine phosphatases, with promising antitumor activity. The total synthesis of these antitumor agents has enabled the production of structural analogs, which are useful to explore the biological significance of features contained in the parent compounds. Here, the inhibitory activity of fostriecin, cytostatin, and 10 key structural analogs were tested in side-by-side phosphatase assays to further characterize their inhibitory activity against PP1c (Ser/Thr protein phosphatase 1 catalytic subunit), PP2Ac (Ser/Thr protein phosphatase 2A catalytic subunit), PP5c (Ser/Thr protein phosphatase 5 catalytic subunit), and chimeras of PP1 (Ser/Thr protein phosphatase 1) and PP5 (Ser/Thr protein phosphatase 5), in which key residues predicted for inhibitor contact with PP2A (Ser/Thr protein phosphatase 2A) were introduced into PP1 and PP5 using site-directed mutagenesis. The data confirm the importance of the C9-phosphate and C11-alcohol for general inhibition and further demonstrate the importance of a predicted C3 interaction with a unique cysteine (Cys(269)) in the beta12-beta13 loop of PP2A. The data also indicate that additional features beyond the unsaturated lactone contribute to inhibitory potency and selectivity. Notably, a derivative of fostriecin lacking the entire lactone subunit demonstrated marked potency and selectivity for PP2A, while having substantially reduced and similar activity against PP1 and PP1/PP2A- PP5/PP2A-chimeras that have greatly increased sensitivity to both fostriecin and cytostatin. This suggests that other features [e.g., the (Z,Z,E)-triene] also contribute to inhibitory selectivity. When considered together with previous data, these studies suggest that, despite the high structural conservation of the catalytic site in PP1, PP2A and PP5, the development of highly selective catalytic inhibitors should be feasible.


Assuntos
Alcenos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Proteínas Mutantes Quiméricas/antagonistas & inibidores , Proteínas Nucleares/antagonistas & inibidores , Organofosfatos/farmacologia , Fosfoproteínas Fosfatases/antagonistas & inibidores , Proteína Fosfatase 1/antagonistas & inibidores , Proteína Fosfatase 2/antagonistas & inibidores , Pironas/farmacologia , Alcenos/química , Alcenos/metabolismo , Sequência de Aminoácidos , Animais , Domínio Catalítico/efeitos dos fármacos , Domínio Catalítico/genética , Bovinos , Inibidores Enzimáticos/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Organofosfatos/química , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Polienos , Ligação Proteica/efeitos dos fármacos , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Estrutura Terciária de Proteína/efeitos dos fármacos , Pironas/química , Pironas/metabolismo , Coelhos , Relação Estrutura-Atividade
18.
Curr Med Chem ; 26(15): 2634-2660, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29737249

RESUMO

BACKGROUND: The reversible phosphorylation of proteins regulates many key functions in eukaryotic cells. Phosphorylation is catalyzed by protein kinases, with the majority of phosphorylation occurring on side chains of serine and threonine residues. The phosphomonoesters generated by protein kinases are hydrolyzed by protein phosphatases. In the absence of a phosphatase, the half-time for the hydrolysis of alkyl phosphate dianions at 25º C is over 1 trillion years; knon ~2 x 10-20 sec-1. Therefore, ser/thr phosphatases are critical for processes controlled by reversible phosphorylation. METHODS: This review is based on the literature searched in available databases. We compare the catalytic mechanism of PPP-family phosphatases (PPPases) and the interactions of inhibitors that target these enzymes. RESULTS: PPPases are metal-dependent hydrolases that enhance the rate of hydrolysis ([kcat/kM]/knon ) by a factor of ~1021, placing them among the most powerful known catalysts on earth. Biochemical and structural studies indicate that the remarkable catalytic proficiencies of PPPases are achieved by 10 conserved amino acids, DXH(X)~26DXXDR(X)~20- 26NH(X)~50H(X)~25-45R(X)~30-40H. Six act as metal-coordinating residues. Four position and orient the substrate phosphate. Together, two metal ions and the 10 catalytic residues position the phosphoryl group and an activated bridging water/hydroxide nucleophile for an inline attack upon the substrate phosphorous atom. The PPPases are conserved among species, and many structurally diverse natural toxins co-evolved to target these enzymes. CONCLUSION: Although the catalytic site is conserved, opportunities for the development of selective inhibitors of this important group of metalloenzymes exist.


Assuntos
Inibidores Enzimáticos/química , Fosfoproteínas Fosfatases/antagonistas & inibidores , Animais , Catálise , Domínio Catalítico , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Ligação Proteica , Domínios Proteicos
19.
Sci Rep ; 9(1): 5969, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979909

RESUMO

Cholesterol is an essential component of membranes, which is acquired by cells via receptor-mediated endocytosis of lipoproteins or via de novo synthesis. In specialized cells, anabolic enzymes metabolize cholesterol, generating steroid hormones or bile acids. However, surplus cholesterol cannot be catabolized due to the lack of enzymes capable of degrading the cholestane ring. The inability to degrade cholesterol becomes evident in the development and progression of cardiovascular disease, where the accumulation of cholesterol/cholesteryl-esters in macrophages can elicit a maladaptive immune response leading to the development and progression of atherosclerosis. The discovery of cholesterol catabolic pathways in Actinomycetes led us to the hypothesis that if enzymes enabling cholesterol catabolism could be genetically engineered and introduced into human cells, the atherosclerotic process may be prevented or reversed. Comparison of bacterial enzymes that degrade cholesterol to obtain carbon and generate energy with the action of human enzymes revealed that humans lack a 3-ketosteroid Δ1-dehydrogenase (Δ1-KstD), which catalyzes the C-1 and C-2 desaturation of ring A. Here we describe the construction, heterologous expression, and actions of a synthetic humanized Δ1-KstD expressed in Hep3B and U-937 cells, providing proof that one of three key enzymes required for cholesterol ring opening can be functionally expressed in human cells.


Assuntos
Colesterol/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Linhagem Celular , Escherichia coli , Engenharia Genética , Humanos , Oxirredutases/genética , Estudo de Prova de Conceito
20.
Mol Cancer Ther ; 18(3): 556-566, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30679389

RESUMO

LB-100 is an experimental cancer therapeutic with cytotoxic activity against cancer cells in culture and antitumor activity in animals. The first phase I trial (NCT01837667) evaluating LB-100 recently concluded that safety and efficacy parameters are favorable for further clinical testing. Although LB-100 is widely reported as a specific inhibitor of serine/threonine phosphatase 2A (PP2AC/PPP2CA:PPP2CB), we could find no experimental evidence in the published literature demonstrating the specific engagement of LB-100 with PP2A in vitro, in cultured cells, or in animals. Rather, the premise for LB-100 targeting PP2AC is derived from studies that measure phosphate released from a phosphopeptide (K-R-pT-I-R-R) or inferred from the ability of LB-100 to mimic activity previously reported to result from the inhibition of PP2AC by other means. PP2AC and PPP5C share a common catalytic mechanism. Here, we demonstrate that the phosphopeptide used to ascribe LB-100 specificity for PP2A is also a substrate for PPP5C. Inhibition assays using purified enzymes demonstrate that LB-100 is a catalytic inhibitor of both PP2AC and PPP5C. The structure of PPP5C cocrystallized with LB-100 was solved to a resolution of 1.65Å, revealing that the 7-oxabicyclo[2.2.1]heptane-2,3-dicarbonyl moiety coordinates with the metal ions and key residues that are conserved in both PP2AC and PPP5C. Cell-based studies revealed some known actions of LB-100 are mimicked by the genetic disruption of PPP5C These data demonstrate that LB-100 is a catalytic inhibitor of both PP2AC and PPP5C and suggest that the observed antitumor activity might be due to an additive effect achieved by suppressing both PP2A and PPP5C.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Neoplasias/tratamento farmacológico , Proteínas Nucleares/química , Fosfoproteínas Fosfatases/química , Piperazinas/química , Proteína Fosfatase 2/química , Sequência de Aminoácidos/genética , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Catálise , Domínio Catalítico/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Metais/química , Metilação , Mutagênese Sítio-Dirigida , Neoplasias/genética , Neoplasias/patologia , Proteínas Nucleares/antagonistas & inibidores , Fosfoproteínas Fosfatases/antagonistas & inibidores , Piperazinas/farmacologia , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA