Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(26): 10842-7, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23754382

RESUMO

The selectivity filter of K(+) channels is conserved throughout all kingdoms of life. Carbonyl groups of highly conserved amino acids point toward the lumen to act as surrogates for the water molecules of K(+) hydration. Ion conductivity is abrogated if some of these carbonyl groups flip out of the lumen, which happens (i) in the process of C-type inactivation or (ii) during filter collapse in the absence of K(+). Here, we show that K(+) channels remain permeable to water, even after entering such an electrically silent conformation. We reconstituted fluorescently labeled and constitutively open mutants of the bacterial K(+) channel KcsA into lipid vesicles that were either C-type inactivating or noninactivating. Fluorescence correlation spectroscopy allowed us to count both the number of proteoliposomes and the number of protein-containing micelles after solubilization, providing the number of reconstituted channels per proteoliposome. Quantification of the per-channel increment in proteoliposome water permeability with the aid of stopped-flow experiments yielded a unitary water permeability pf of (6.9 ± 0.6) × 10(-13) cm(3)⋅s(-1) for both mutants. "Collapse" of the selectivity filter upon K(+) removal did not alter pf and was fully reversible, as demonstrated by current measurements through planar bilayers in a K(+)-containing medium to which K(+)-free proteoliposomes were fused. Water flow through KcsA is halved by 200 mM K(+) in the aqueous solution, which indicates an effective K(+) dissociation constant in that range for a singly occupied channel. This questions the widely accepted hypothesis that multiple K(+) ions in the selectivity filter act to mutually destabilize binding.


Assuntos
Proteínas de Bactérias/metabolismo , Canais de Potássio/metabolismo , Streptomyces lividans/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Permeabilidade da Membrana Celular , Ativação do Canal Iônico , Transporte de Íons , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Canais de Potássio/química , Canais de Potássio/genética , Conformação Proteica , Proteolipídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptomyces lividans/química , Streptomyces lividans/genética , Água/metabolismo
2.
Anal Chem ; 86(1): 920-7, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24354292

RESUMO

Phase diagrams offer a wealth of thermodynamic information on aqueous mixtures of bilayer-forming lipids and micelle-forming detergents, providing a straightforward means of monitoring and adjusting the supramolecular state of such systems. However, equilibrium phase diagrams are of very limited use for the reconstitution of membrane proteins because of the occurrence of irreversible, unproductive processes such as aggregation and precipitation that compete with productive reconstitution. Here, we exemplify this by dissecting the effects of the K(+) channel KcsA on the process of bilayer self-assembly in a mixture of Escherichia coli polar lipid extract and the nonionic detergent octyl-ß-d-glucopyranoside. Even at starting concentrations in the low micromolar range, KcsA has a tremendous impact on the supramolecular organization of the system, shifting the critical lipid/detergent ratios at the onset and completion of vesicle formation by more than 2-fold. Thus, equilibrium phase diagrams obtained for protein-free lipid/detergent mixtures would be misleading when used to guide the reconstitution process. To address this issue, we demonstrate that, even under such nonequilibrium conditions, high-sensitivity isothermal titration calorimetry can be exploited to monitor the progress of membrane-protein reconstitution in real time, in a noninvasive manner, and at high resolution to yield functional proteoliposomes with a narrow size distribution for further downstream applications.


Assuntos
Calorimetria/métodos , Sistemas Computacionais , Proteínas de Escherichia coli/análise , Proteínas de Membrana/análise , Condutometria/métodos
3.
Biophys Chem ; 150(1-3): 23-8, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20303644

RESUMO

Sensory rhodopsin I (SRI) from Halobacterium salinarum mediates both positive and negative phototaxis in a light-dependent manner. SRI photoactivation elicits extensive structural changes which are transmitted to the cognate transducer (HtrI). The atomic structure of the SRI-HtrI complex has not been solved yet and, therefore, details on the interaction which define the binding site between receptor and transducer are missing. The related complex SRII-HtrII from Natronobacterium pharaonis exhibits a hydrogen bond between the receptor Y199 and transducer N54. This bond has been suggested to mediate signal relay in the SRII-HtrII system. Our previous results on the SRI-HtrI complex indicated that HtrI N53 forms a hydrogen bond at the cytoplasm-proximity of the membrane. Here, based on kinetic and spectroscopic data, we demonstrate that Y210 of SRI is functionally significant for the signal relay in the SRI-HtrI complex. Each of the tyrosine residues Y197, Y208, Y210 and Y213 were conservatively exchanged for phenylalanine but only the Y210F mutation led to the disappearance of the infrared band of the terminal amide C=O of N53. From this FT-IR spectroscopic result, we conclude that Y210 of SRI and N53 of HtrI interact via a hydrogen bond which is crucial for the signal transfer from the light receptor to the transducer.


Assuntos
Proteínas Arqueais/metabolismo , Asparagina/metabolismo , Halobacterium salinarum/metabolismo , Halorrodopsinas/metabolismo , Proteínas de Membrana/metabolismo , Rodopsinas Sensoriais/metabolismo , Transdução de Sinais , Tirosina/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/genética , Asparagina/genética , Halobacterium salinarum/genética , Halorrodopsinas/genética , Ligação de Hidrogênio , Proteínas de Membrana/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Rodopsinas Sensoriais/genética , Espectroscopia de Infravermelho com Transformada de Fourier , Titulometria , Tirosina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA