Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987603

RESUMO

A defining pathological feature of most neurodegenerative diseases is the assembly of proteins into amyloid that form disease-specific structures1. In Alzheimer's disease, this is characterized by the deposition of ß-amyloid and tau with disease-specific conformations. The in situ structure of amyloid in the human brain is unknown. Here, using cryo-fluorescence microscopy-targeted cryo-sectioning, cryo-focused ion beam-scanning electron microscopy lift-out and cryo-electron tomography, we determined in-tissue architectures of ß-amyloid and tau pathology in a postmortem Alzheimer's disease donor brain. ß-amyloid plaques contained a mixture of fibrils, some of which were branched, and protofilaments, arranged in parallel arrays and lattice-like structures. Extracellular vesicles and cuboidal particles defined the non-amyloid constituents of ß-amyloid plaques. By contrast, tau inclusions formed parallel clusters of unbranched filaments. Subtomogram averaging a cluster of 136 tau filaments in a single tomogram revealed the polypeptide backbone conformation and filament polarity orientation of paired helical filaments within tissue. Filaments within most clusters were similar to each other, but were different between clusters, showing amyloid heterogeneity that is spatially organized by subcellular location. The in situ structural approaches outlined here for human donor tissues have applications to a broad range of neurodegenerative diseases.

2.
Acta Neuropathol ; 147(1): 14, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38198008

RESUMO

Alpha-synuclein (aSyn) pathology is present in approximately 50% of Alzheimer's disease (AD) cases at autopsy and might impact the age-of-onset and disease progression in AD. Here, we aimed to determine whether tau and aSyn profiles differ between AD cases with Lewy bodies (AD-LB), pure AD and Parkinson's disease with dementia (PDD) cases using epitope-, post-translational modification- (PTM) and isoform-specific tau and aSyn antibody panels spanning from the N- to C-terminus. We included the middle temporal gyrus (MTG) and amygdala (AMY) of clinically diagnosed and pathologically confirmed cases and performed dot blotting, western blotting and immunohistochemistry combined with quantitative and morphological analyses. All investigated phospho-tau (pTau) species, except pT181, were upregulated in AD-LB and AD cases compared to PDD and control cases, but no significant differences were observed between AD-LB and AD subjects. In addition, tau antibodies targeting the proline-rich regions and C-terminus showed preferential binding to AD-LB and AD brain homogenates. Antibodies targeting C-terminal aSyn epitopes and pS129 aSyn showed stronger binding to AD-LB and PDD cases compared to AD and control cases. Two pTau species (pS198 and pS396) were specifically detected in the soluble protein fractions of AD-LB and AD subjects, indicative of early involvement of these PTMs in the multimerization process of tau. Other phospho-variants for both tau (pT212/S214, pT231 and pS422) and aSyn (pS129) were only detected in the insoluble protein fraction of AD-LB/AD and AD-LB/PDD cases, respectively. aSyn load was higher in the AMY of AD-LB cases compared to PDD cases, suggesting aggravated aSyn pathology under the presence of AD pathology, while tau load was similar between AD-LB and AD cases. Co-localization of pTau and aSyn could be observed within astrocytes of AD-LB cases within the MTG. These findings highlight a unique pathological signature for AD-LB cases compared to pure AD and PDD cases.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Sinucleinopatias , Humanos , alfa-Sinucleína , Corpos de Lewy , Anticorpos , Epitopos
3.
Brain ; 146(1): 307-320, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35136978

RESUMO

Three subtypes of distinct pathological proteins accumulate throughout multiple brain regions and shape the heterogeneous clinical presentation of frontotemporal lobar degeneration (FTLD). Besides the main pathological subtypes, co-occurring pathologies are common in FTLD brain donors. The objective of this study was to investigate how the location and burden of (co-)pathology correlate to early psychiatric and behavioural symptoms of FTLD. Eighty-seven brain donors from The Netherlands Brain Bank cohort (2008-2017) diagnosed with FTLD were included: 46 FTLD-TAR DNA-binding protein 43 (FTLD-TDP), 34 FTLD-tau, and seven FTLD-fused-in-sarcoma (FTLD-FUS). Post-mortem brain tissue was dissected into 20 standard regions and stained for phosphorylated TDP-43, phosphorylated tau, FUS, amyloid-ß, and α-synuclein. The burden of each pathological protein in each brain region was assessed with a semi-quantitative score. Clinical records were reviewed for early psychiatric and behavioural symptoms. Whole-brain clinico-pathological partial correlations were calculated (local false discovery rate threshold = 0.01). Elaborating on the results, we validated one finding using a quantitative assessment of TDP-43 pathology in the granular layer of the hippocampus in FTLD-TDP brain donors with (n = 15) and without (n = 15) hallucinations. In subcortical regions, the presence of psychiatric symptoms showed positive correlations with increased hippocampal pathology burden: hallucinations with TDP-43 in the granular layer (R = 0.33), mania with TDP-43 in CA1 (R = 0.35), depression with TDP-43 in CA3 and with parahippocampal tau (R = 0.30 and R = 0.23), and delusions with CA3 tau (R = 0.26) and subicular amyloid-ß (R = 0.25). Behavioural disinhibition showed positive correlations with tau burden in the thalamus (R = 0.29) and with both TDP-43 and amyloid-ß burden in the subthalamus (R = 0.23 and R = 0.24). In the brainstem, the presence of α-synuclein co-pathology in the substantia nigra correlated with disinhibition (R = 0.24), tau pathology in the substantia nigra correlated with depression (R = 0.25) and in the locus coeruleus with both depression and perseverative/compulsive behaviour (R = 0.26 and R = 0.32). The quantitative assessment of TDP-43 in the granular layer validated the higher burden of TDP-43 pathology in brain donors with hallucinations compared to those without hallucinations (P = 0.007). Our results show that psychiatric symptoms of FTLD are linked to subcortical pathology burden in the hippocampus, and hallucinations are linked to a higher burden of TDP-43 in the granular layer. Co-occurring non-FTLD pathologies in subcortical regions could contribute to configuring the clinical phenotype of FTLD.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Doença de Pick , Humanos , Demência Frontotemporal/patologia , alfa-Sinucleína/metabolismo , Doença de Pick/patologia , Degeneração Lobar Frontotemporal/patologia , Encéfalo/patologia , Alucinações , Peptídeos beta-Amiloides/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas tau/metabolismo
4.
Alzheimers Dement ; 20(1): 330-340, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37615275

RESUMO

BACKGROUND: Phosphorylated tau (p-tau) accumulation, a hallmark of Alzheimer's disease (AD), can also be found in the retina. However, it is uncertain whether it is linked to AD or another tauopathy. METHODS: Retinas from 164 individuals, with and without AD, were analyzed for p-tau accumulation and its relationship with age, dementia, and vision impairment. RESULTS: Retinal p-tau pathology showed a consistent pattern with four stages and a molecular composition distinct from that of cerebral tauopathies. The stage of retinal p-tau pathology correlated with age (r = 0.176, P = 0.024) and was associated with AD (odds ratio [OR] 3.193; P = 0.001), and inflammation (OR = 2.605; P = 0.001). Vision impairment was associated with underlying eye diseases (ß = 0.292; P = 0.001) and the stage of retinal p-tau pathology (ß = 0.192; P = 0.030) in a linear regression model. CONCLUSIONS: The results show the presence of a primary retinal tauopathy that is distinct from cerebral tauopathies.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Tauopatias/patologia , Proteínas tau , Doença de Alzheimer/patologia , Retina
5.
Acta Neuropathol ; 145(2): 197-218, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36480077

RESUMO

The retina is a potential source of biomarkers for the detection of neurodegenerative diseases. Accumulation of phosphorylated tau (p-tau) in the brain is a pathological feature characteristic for Alzheimer's disease (AD) and primary tauopathies. In this study the presence of p-tau in the retina in relation to tau pathology in the brain was assessed. Post-mortem eyes and brains were collected through the Netherlands Brain Bank from donors with AD (n = 17), primary tauopathies (n = 8), α-synucleinopathies (n = 13), other neurodegenerative diseases including non-tau frontotemporal lobar degeneration (FTLD) (n = 9), and controls (n = 15). Retina cross-sections were assessed by immunohistochemistry using antibodies directed against total tau (HT7), 3R and 4R tau isoforms (RD3, RD4), and phospho-epitopes Ser202/Thr205 (AT8), Thr217 (anti-T217), Thr212/Ser214 (AT100), Thr181 (AT270), Ser396 (anti-pS396) and Ser422 (anti-pS422). Retinal tau load was compared to p-tau Ser202/Thr205 and p-tau Thr217 load in various brain regions. Total tau, 3R and 4R tau isoforms were most prominently present in the inner plexiform layer (IPL) and outer plexiform layer (OPL) of the retina and were detected in all cases and controls as a diffuse and somatodendritic signal. Total tau, p-tau Ser202/Thr205 and p-tau Thr217 was observed in amacrine and horizontal cells of the inner nuclear layer (INL). Various antibodies directed against phospho-epitopes of tau showed immunoreactivity in the IPL, OPL, and INL. P-tau Ser202/Thr205 and Thr217 showed significant discrimination between AD and other tauopathies, and non-tauopathy cases including controls. Whilst immunopositivity was observed for p-tau Thr212/Ser214, Thr181 and Ser396, there were no group differences. P-tau Ser422 did not show any immunoreactivity in the retina. The presence of retinal p-tau Ser202/Thr205 and Thr217 correlated with Braak stage for NFTs and with the presence of p-tau Ser202/Thr205 in hippocampus and cortical brain regions. Depending on the phospho-epitope, p-tau in the retina is a potential biomarker for AD and primary tauopathies.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Doença de Alzheimer/patologia , Fosforilação , Proteínas tau/metabolismo , Tauopatias/patologia , Encéfalo/patologia , Retina/patologia , Epitopos
6.
Alzheimers Dement ; 19(7): 2831-2841, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36583547

RESUMO

INTRODUCTION: With increasing age, neuropathological substrates associated with Alzheimer's disease (AD) accumulate in brains of cognitively healthy individuals-are they resilient, or resistant to AD-associated neuropathologies? METHODS: In 85 centenarian brains, we correlated NIA (amyloid) stages, Braak (neurofibrillary tangle) stages, and CERAD (neuritic plaque) scores with cognitive performance close to death as determined by Mini-Mental State Examination (MMSE) scores. We assessed centenarian brains against 2131 brains from AD patients, non-AD demented, and non-demented individuals in an age continuum ranging from 16 to 100+ years. RESULTS: With age, brains from non-demented individuals reached the NIA and Braak stages observed in AD patients, while CERAD scores remained lower. In centenarians, NIA stages varied (22.4% were the highest stage 3), Braak stages rarely exceeded stage IV (5.9% were V), and CERAD scores rarely exceeded 2 (4.7% were 3); within these distributions, we observed no correlation with the MMSE (NIA: P = 0.60; Braak: P = 0.08; CERAD: P = 0.16). DISCUSSION: Cognitive health can be maintained despite the accumulation of high levels of AD-related neuropathological substrates. HIGHLIGHTS: Cognitively healthy elderly have AD neuropathology levels similar to AD patients. AD neuropathology loads do not correlate with cognitive performance in centenarians. Some centenarians are resilient to the highest levels of AD neuropathology.


Assuntos
Doença de Alzheimer , Emaranhados Neurofibrilares , Idoso de 80 Anos ou mais , Humanos , Idoso , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Emaranhados Neurofibrilares/patologia , Placa Amiloide/patologia , Centenários , Doença de Alzheimer/patologia , Encéfalo/patologia
7.
Alzheimers Dement ; 19(11): 5036-5047, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37092333

RESUMO

INTRODUCTION: Neuropathological substrates associated with neurodegeneration occur in brains of the oldest old. How does this affect cognitive performance? METHODS: The 100-plus Study is an ongoing longitudinal cohort study of centenarians who self-report to be cognitively healthy; post mortem brain donation is optional. In 85 centenarian brains, we explored the correlations between the levels of 11 neuropathological substrates with ante mortem performance on 12 neuropsychological tests. RESULTS: Levels of neuropathological substrates varied: we observed levels up to Thal-amyloid beta phase 5, Braak-neurofibrillary tangle (NFT) stage V, Consortium to Establish a Registry for Alzheimer's Disease (CERAD)-neuritic plaque score 3, Thal-cerebral amyloid angiopathy stage 3, Tar-DNA binding protein 43 (TDP-43) stage 3, hippocampal sclerosis stage 1, Braak-Lewy bodies stage 6, atherosclerosis stage 3, cerebral infarcts stage 1, and cerebral atrophy stage 2. Granulovacuolar degeneration occurred in all centenarians. Some high performers had the highest neuropathology scores. DISCUSSION: Only Braak-NFT stage and limbic-predominant age-related TDP-43 encephalopathy (LATE) pathology associated significantly with performance across multiple cognitive domains. Of all cognitive tests, the clock-drawing test was particularly sensitive to levels of multiple neuropathologies.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Idoso de 80 Anos ou mais , Humanos , Peptídeos beta-Amiloides/metabolismo , Centenários , Estudos Longitudinais , Doença de Alzheimer/patologia , Encéfalo/patologia , Emaranhados Neurofibrilares/patologia , Neuropatologia , Cognição
8.
J Neuroinflammation ; 19(1): 50, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35172843

RESUMO

BACKGROUND: Parkinson's disease (PD) is characterized by the loss of nigral dopaminergic neurons leading to impaired striatal dopamine signaling, α-synuclein- (α-syn-) rich inclusions, and neuroinflammation. Degenerating neurons are surrounded by activated microglia with increased secretion of interleukin-1ß (IL-1ß), driven largely by the NLRP3 inflammasome. A critical role for microglial NLRP3 inflammasome activation in the progression of both dopaminergic neurodegeneration and α-syn pathology has been demonstrated in parkinsonism mouse models. Fibrillar α-syn activates this inflammasome in mouse and human macrophages, and we have shown previously that the same holds true for primary human microglia. Dopamine blocks microglial NLRP3 inflammasome activation in the MPTP model, but its effects in this framework, highly relevant to PD, remain unexplored in primary human microglia and in other in vivo parkinsonism models. METHODS: Biochemical techniques including quantification of IL-1ß secretion and confocal microscopy were employed to gain insight into dopamine signaling-mediated inhibition of the NLRP3 inflammasome mechanism in primary human microglia and the SYN120 transgenic mouse model. Dopamine and related metabolites were applied to human microglia together with various inflammasome activating stimuli. The involvement of the receptors through which these catecholamines were predicted to act were assessed with agonists in both species. RESULTS: We show in primary human microglia that dopamine, L-DOPA, and high extracellular K+, but not norepinephrine and epinephrine, block canonical, non-canonical, and α-syn-mediated NLRP3 inflammasome-driven IL-1ß secretion. This suggests that dopamine acts as an inflammasome inhibitor in human microglia. Accordingly, we provide evidence that dopamine exerts its inhibitory effect through dopamine receptor D1 and D2 (DRD1 and DRD2) signaling. We also show that aged mice transgenic for human C-terminally truncated (1-120) α-syn (SYN120 tg mice) display increased NLRP3 inflammasome activation in comparison to WT mice that is diminished upon DRD1 agonism. CONCLUSIONS: Dopamine inhibits canonical, non-canonical, and α-syn-mediated activation of the NLRP3 inflammasome in primary human microglia, as does high extracellular K+. We suggest that dopamine serves as an endogenous repressor of the K+ efflux-dependent microglial NLRP3 inflammasome activation that contributes to dopaminergic neurodegeneration in PD, and that this reciprocation may account for the specific vulnerability of these neurons to disease pathology.


Assuntos
Inflamassomos , Doença de Parkinson , Animais , Dopamina/metabolismo , Inflamassomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doença de Parkinson/patologia
9.
Neuropathol Appl Neurobiol ; 48(4): e12798, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35152451

RESUMO

AIMS: The loss of von Economo neurons (VENs) and GABA receptor subunit theta (GABRQ) containing neurons is linked to early changes in social-emotional cognition and is seen in frontotemporal dementia (FTD) due to C9orf72 repeat expansion. We investigate the vulnerability of VENs and GABRQ-expressing neurons in sporadic and genetic forms of FTD with different underlying molecular pathology and their association with the presence and severity of behavioural symptoms. METHODS: We quantified VENs and GABRQ-immunopositive neurons in the anterior cingulate cortex (ACC) in FTD with underlying TDP43 (FTLD-TDP) (n = 34), tau (FTLD-tau) (n = 24) or FUS (FTLD-FUS) (n = 8) pathology, neurologically healthy controls (n = 12) and Alzheimer's disease (AD) (n = 7). Second, we quantified VENs and the GABRQ-expressing population in relation to presence of behavioural symptoms in the first years of disease onset. RESULTS: The number of VENs and GABRQ-expressing neurons and the ratio of VENs and GABRQ-expressing neurons over total Layer 5 neuronal population decreased in FTLD-TDP and FTLD-FUS, but not in FTLD-tau, compared to control and AD. The severity of early behavioural symptoms in all donors correlated with a lower VEN and GABRQ neuronal count. CONCLUSION: We show that in FTD, a loss of VENs together with GABRQ-expressing pyramidal neurons is associated with TDP43 and FUS pathology. No significant loss was found in donors with FTLD-tau pathology; however, this could be due to the specific MAPT mutation studied and small sporadic FTLD-tau sample size. Overall, we show the GABRQ-expressing population correlates with behavioural changes and suggest they are key in modulating behaviour in FTD.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Doença de Alzheimer/patologia , Sintomas Comportamentais , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Giro do Cíngulo/patologia , Humanos , Neurônios/patologia , Células Piramidais/patologia , Receptores de GABA-A/genética
10.
Glia ; 69(6): 1413-1428, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33506583

RESUMO

Synucleinopathies such as Parkinson's disease (PD) are hallmarked by α-synuclein (α-syn) pathology and neuroinflammation. This neuroinflammation involves activated microglia with increased secretion of interleukin-1ß (IL-1ß). The main driver of IL-1ß secretion from microglia is the NLRP3 inflammasome. A critical link between microglial NLRP3 inflammasome activation and the progression of both α-syn pathology and dopaminergic neurodegeneration has been identified in various PD models in vivo. α-Syn is known to activate the microglial NLRP3 inflammasome in murine models, but its relationship to this inflammasome in human microglia has not been established. In this study, IL-1ß secretion from primary mouse microglia induced by α-syn fibrils was dependent on NLRP3 inflammasome assembly and caspase-1 activity, as previously reported. We show that exposure of primary human microglia to α-syn fibrils also resulted in significant IL-1ß secretion that was dependent on inflammasome assembly and involved the recruitment of caspase-1 protein to inflammasome scaffolds as visualized with superresolution microscopy. While canonical IL-1ß secretion was clearly dependent on caspase-1 enzymatic activity, this activity was less clearly involved for α-syn-induced IL-1ß secretion from human microglia. This work presents similarities between primary human and mouse microglia in the mechanisms of activation of the NLRP3 inflammasome by α-syn, but also highlights evidence to suggest that there may be a difference in the requirement for caspase-1 activity in IL-1ß output. The data represent a novel characterization of PD-related NLRP3 inflammasome activation in primary human microglia and further implicate this mechanism in the pathology underlying PD.


Assuntos
Inflamassomos , Doença de Parkinson , alfa-Sinucleína/metabolismo , Animais , Caspase 1 , Humanos , Interleucina-1beta , Camundongos , Microglia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Doenças Neuroinflamatórias
11.
Ann Neurol ; 87(6): 950-961, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32281118

RESUMO

OBJECTIVE: The pathology of frontotemporal dementia, termed frontotemporal lobar degeneration (FTLD), is characterized by distinct molecular classes of aggregated proteins, the most common being TAR DNA-binding protein-43 (TDP-43), tau, and fused in sarcoma (FUS). With a few exceptions, it is currently not possible to predict the underlying pathology based on the clinical syndrome. In this study, we set out to investigate the relationship between pathological and clinical presentation at single symptom level, including neuropsychiatric features. METHODS: The presence or absence of symptoms from the current clinical guidelines, together with neuropsychiatric features, such as hallucinations and delusions, were scored and compared across pathological groups in a cohort of 150 brain donors. RESULTS: Our cohort consisted of 68.6% FTLD donors (35.3% TDP-43, 28% tau, and 5.3% FUS) and 31.3% non-FTLD donors with a clinical diagnosis of frontotemporal dementia and a different pathological substrate, such as Alzheimer's disease (23%). The presence of hyperorality points to FTLD rather than non-FTLD pathology (p < 0.001). Within the FTLD group, hallucinations in the initial years of the disease were related to TDP-43 pathology (p = 0.02), including but not limited to chromosome 9 open reading frame 72 (C9orf72) repeat expansion carriers. The presence of perseverative or compulsive behavior was more common in the TDP-B and TDP-C histotypes (p = 0.002). INTERPRETATION: Our findings indicate that neuropsychiatric features are common in FTLD and form an important indicator of underlying pathology. In order to allow better inclusion of patients in targeted molecular trials, the routine evaluation of patients with frontotemporal dementia should include the presence and nature of neuropsychiatric symptoms. ANN NEUROL 2020;87:950-961.


Assuntos
Demência Frontotemporal/patologia , Demência Frontotemporal/psicologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/sangue , Doença de Alzheimer/psicologia , Autopsia , Encéfalo/patologia , Estudos de Coortes , Proteínas de Ligação a DNA/sangue , Delusões/etiologia , Delusões/psicologia , Diagnóstico Diferencial , Feminino , Demência Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Alucinações/etiologia , Alucinações/psicologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteína FUS de Ligação a RNA/sangue
12.
Acta Neuropathol ; 141(3): 341-358, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33492460

RESUMO

Granulovacuolar degeneration (GVD) is a common feature in Alzheimer's disease (AD). The occurrence of GVD is closely associated with that of neurofibrillary tangles (NFTs) and GVD is even considered to be a pre-NFT stage in the disease process of AD. Currently, the composition of GVD bodies, the mechanisms associated with GVD and how GVD exactly relates to NFTs is not well understood. By combining immunohistochemistry (IHC) and laser microdissection (LMD) we isolated neurons with GVD and those bearing tangles separately from human post-mortem AD hippocampus (n = 12) using their typical markers casein kinase (CK)1δ and phosphorylated tau (AT8). Control neurons were isolated from cognitively healthy cases (n = 12). 3000 neurons per sample were used for proteome analysis by label free LC-MS/MS. In total 2596 proteins were quantified across samples and a significant change in abundance of 115 proteins in GVD and 197 in tangle bearing neurons was observed compared to control neurons. With IHC the presence of PPIA, TOMM34, HSP70, CHMP1A, TPPP and VXN was confirmed in GVD containing neurons. We found multiple proteins localizing specifically to the GVD bodies, with VXN and TOMM34 being the most prominent new protein markers for GVD bodies. In general, protein groups related to protein folding, proteasomal function, the endolysosomal pathway, microtubule and cytoskeletal related function, RNA processing and glycolysis were found to be changed in GVD neurons. In addition to these protein groups, tangle bearing neurons show a decrease in ribosomal proteins, as well as in various proteins related to protein folding. This study, for the first time, provides a comprehensive human based quantitative assessment of protein abundances in GVD and tangle bearing neurons. In line with previous functional data showing that tau pathology induces GVD, our data support the model that GVD is part of a pre-NFT stage representing a phase in which proteostasis and cellular homeostasis is disrupted. Elucidating the molecular mechanisms and cellular processes affected in GVD and its relation to the presence of tau pathology is highly relevant for the identification of new drug targets for therapy.


Assuntos
Doença de Alzheimer/metabolismo , Degeneração Neural/metabolismo , Emaranhados Neurofibrilares/metabolismo , Neurônios/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Feminino , Humanos , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Masculino , Pessoa de Meia-Idade , Degeneração Neural/patologia , Emaranhados Neurofibrilares/patologia , Neurônios/patologia , Proteoma , Vacúolos/metabolismo , Vacúolos/patologia
13.
Acta Neuropathol ; 140(6): 811-830, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32926214

RESUMO

Alzheimer's disease (AD) is characterized by amyloid-beta (Aß) deposits, which come in myriad morphologies with varying clinical relevance. Previously, we observed an atypical Aß deposit, referred to as the coarse-grained plaque. In this study, we evaluate the plaque's association with clinical disease and perform in-depth immunohistochemical and morphological characterization. The coarse-grained plaque, a relatively large (Ø ≈ 80 µm) deposit, characterized as having multiple cores and Aß-devoid pores, was prominent in the neocortex. The plaque was semi-quantitatively scored in the middle frontal gyrus of Aß-positive cases (n = 74), including non-demented cases (n = 15), early-onset (EO)AD (n = 38), and late-onset (LO)AD cases (n = 21). The coarse-grained plaque was only observed in cases with clinical dementia and more frequently present in EOAD compared to LOAD. This plaque was associated with a homozygous APOE ε4 status and cerebral amyloid angiopathy (CAA). In-depth characterization was done by studying the coarse-grained plaque's neuritic component (pTau, APP, PrPC), Aß isoform composition (Aß40, Aß42, AßN3pE, pSer8Aß), its neuroinflammatory component (C4b, CD68, MHC-II, GFAP), and its vascular attribution (laminin, collagen IV, norrin). The plaque was compared to the classic cored plaque, cotton wool plaque, and CAA. Similar to CAA but different from classic cored plaques, the coarse-grained plaque was predominantly composed of Aß40. Furthermore, the coarse-grained plaque was distinctly associated with both intense neuroinflammation and vascular (capillary) pathology. Confocal laser scanning microscopy (CLSM) and 3D analysis revealed for most coarse-grained plaques a particular Aß40 shell structure and a direct relation with vessels. Based on its morphological and biochemical characteristics, we conclude that the coarse-grained plaque is a divergent Aß plaque-type associated with EOAD. Differences in Aß processing and aggregation, neuroinflammatory response, and vascular clearance may presumably underlie the difference between coarse-grained plaques and other Aß deposits. Disentangling specific Aß deposits between AD subgroups may be important in the search for disease-mechanistic-based therapies.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Angiopatia Amiloide Cerebral/patologia , Placa Amiloide/patologia , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Capilares/patologia , Angiopatia Amiloide Cerebral/genética , Feminino , Humanos , Masculino , Neuritos/patologia
14.
Analyst ; 145(5): 1724-1736, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-31907497

RESUMO

Definite Alzheimer's disease (AD) diagnosis is commonly done on ex vivo brain tissue using immuno-histochemical staining to visualize amyloid-beta (Aß) aggregates, also known as Aß plaques. Raman spectroscopy has shown its potential for non-invasive and label-free determination of bio-molecular compositions, aiding the post-mortem diagnosis of pathological tissue. Here, we investigated whether conventional Raman spectroscopy could be used for the detection of amyloid beta deposits in fixed, ex vivo human brain tissue, taken from the frontal cortex region. We examined the spectra and spectral maps of three severe AD cases and two healthy control cases and compared their spectral outcome among each other as well as to recent results in the literature obtained with various spectroscopic techniques. After hyperspectral Raman mapping, Aß plaques were visualized using Thioflavin-S staining on the exact same tissue sections. As a result, we show that tiny diffuse or tangled-like morphological structures, visible under microscopic conditions on unstained tissue and often but erroneously assumed to be deposits of Aß, are instead usually an aggregation of highly auto-fluorescent lipofuscin granulates without any, or limited, plaque or plaque-like association. The occurrence of these auto-fluorescent particles is equally distributed in both AD and healthy control cases. Therefore, they cannot be used as possible criteria for Alzheimer's disease diagnosis. Furthermore, a unique plaque-specific/Aß spectrum could not be determined even after possible spectral interferences were carefully removed.


Assuntos
Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/análise , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia , Placa Amiloide/metabolismo , Análise Espectral Raman/métodos , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Masculino
15.
Hum Mol Genet ; 26(22): 4441-4450, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28973645

RESUMO

The recent generation of induced pluripotent stem cells (iPSCs) from a patient with Parkinson's disease (PD) resulting from triplication of the α-synuclein (SNCA) gene locus allows unprecedented opportunities to explore its contribution to the molecular pathogenesis of PD. We used the double-nicking CRISPR/Cas9 system to conduct site-specific mutagenesis of SNCA in these cells, generating an isogenic iPSC line with normalized SNCA gene dosage. Comparative gene expression analysis of neuronal derivatives from these iPSCs revealed an ER stress phenotype, marked by induction of the IRE1α/XBP1 axis of the unfolded protein response (UPR) and culminating in terminal UPR activation. Neuropathological analysis of post-mortem brain tissue demonstrated that pIRE1α is expressed in PD brains within neurons containing elevated levels of α-synuclein or Lewy bodies. Having used this pair of isogenic iPSCs to define this phenotype, these cells can be further applied in UPR-targeted drug discovery towards the development of disease-modifying therapeutics.


Assuntos
Células-Tronco Pluripotentes Induzidas/fisiologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , alfa-Sinucleína/genética , Sequência de Bases , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Duplicação Gênica , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Corpos de Lewy/patologia , Mutagênese Sítio-Dirigida , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Resposta a Proteínas não Dobradas , alfa-Sinucleína/metabolismo
16.
Acta Neuropathol ; 138(6): 943-970, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31456031

RESUMO

Granulovacuolar degeneration bodies (GVBs) are membrane-bound vacuolar structures harboring a dense core that accumulate in the brains of patients with neurodegenerative disorders, including Alzheimer's disease and other tauopathies. Insight into the origin of GVBs and their connection to tau pathology has been limited by the lack of suitable experimental models for GVB formation. Here, we used confocal, automated, super-resolution and electron microscopy to demonstrate that the seeding of tau pathology triggers the formation of GVBs in different mouse models in vivo and in primary mouse neurons in vitro. Seeding-induced intracellular tau aggregation, but not seed exposure alone, causes GVB formation in cultured neurons, but not in astrocytes. The extent of tau pathology strongly correlates with the GVB load. Tau-induced GVBs are immunoreactive for the established GVB markers CK1δ, CK1ɛ, CHMP2B, pPERK, peIF2α and pIRE1α and contain a LAMP1- and LIMP2-positive single membrane that surrounds the dense core and vacuole. The proteolysis reporter DQ-BSA is detected in the majority of GVBs, demonstrating that GVBs contain degraded endocytic cargo. GFP-tagged CK1δ accumulates in the GVB core, whereas GFP-tagged tau or GFP alone does not, indicating selective targeting of cytosolic proteins to GVBs. Taken together, we established the first in vitro model for GVB formation by seeding tau pathology in primary neurons. The tau-induced GVBs have the marker signature and morphological characteristics of GVBs in the human brain. We show that GVBs are lysosomal structures distinguished by the accumulation of a characteristic subset of proteins in a dense core.


Assuntos
Lisossomos/patologia , Neurônios/patologia , Tauopatias/patologia , Vacúolos/patologia , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Astrócitos/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Feminino , Humanos , Lisossomos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Tauopatias/metabolismo , Vacúolos/metabolismo , Proteínas tau/genética
17.
Neurobiol Dis ; 112: 136-148, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29355603

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder, leading to the progressive decline of motor control due to the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Accumulating evidence suggest that altered proteostasis is a salient feature of PD, highlighting perturbations to the endoplasmic reticulum (ER), the main compartment involved in protein folding and secretion. PERK is a central ER stress sensor that enforces adaptive programs to recover homeostasis through a block of protein translation and the induction of the transcription factor ATF4. In addition, chronic PERK signaling results in apoptosis induction and neuronal dysfunction due to the repression in the translation of synaptic proteins. Here we confirmed the activation of PERK signaling in postmortem brain tissue derived from PD patients and three different rodent models of the disease. Pharmacological targeting of PERK by the oral administration of GSK2606414 demonstrated efficient inhibition of the pathway in the SNpc after experimental ER stress stimulation. GSK2606414 protected nigral-dopaminergic neurons against a PD-inducing neurotoxin, improving motor performance. The neuroprotective effects of PERK inhibition were accompanied by an increase in dopamine levels and the expression of synaptic proteins. However, GSK2606414 treated animals developed secondary effects possibly related to pancreatic toxicity. This study suggests that strategies to attenuate ER stress levels may be effective to reduce neurodegeneration in PD.


Assuntos
Adenina/análogos & derivados , Modelos Animais de Doenças , Indóis/uso terapêutico , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , eIF-2 Quinase/antagonistas & inibidores , Adenina/farmacologia , Adenina/uso terapêutico , Animais , Feminino , Humanos , Indóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/prevenção & controle , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , eIF-2 Quinase/metabolismo
18.
J Neuroinflammation ; 15(1): 170, 2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29843759

RESUMO

BACKGROUND: While most patients with Alzheimer's disease (AD) present with memory complaints, 30% of patients with early disease onset present with non-amnestic symptoms. This atypical presentation is thought to be caused by a different spreading of neurofibrillary tangles (NFT) than originally proposed by Braak and Braak. Recent studies suggest a prominent role for neuroinflammation in the spreading of tau pathology. METHODS: We aimed to explore whether an atypical spreading of pathology in AD is associated with an atypical distribution of neuroinflammation. Typical and atypical AD cases were selected based on both NFT distribution and amnestic or non-amnestic clinical presentation. Immunohistochemistry was performed on the temporal pole and superior parietal lobe of 10 typical and 9 atypical AD cases. The presence of amyloid-beta (N-terminal; IC16), pTau (AT8), reactive astrocytes (GFAP), microglia (Iba1, CD68, and HLA-DP/DQ/DR), and complement factors (C1q, C3d, C4b, and C5b-9) was quantified by image analysis. Differences in lobar distribution patterns of immunoreactivity were statistically assessed using a linear mixed model. RESULTS: We found a temporal dominant distribution for amyloid-beta, GFAP, and Iba1 in both typical and atypical AD. Distribution of pTau, CD68, HLA-DP/DQ/DR, C3d, and C4b differed between AD variants. Typical AD cases showed a temporal dominant distribution of these markers, whereas atypical AD cases showed a parietal dominant distribution. Interestingly, when quantifying for the number of amyloid-beta plaques instead of stained surface area, atypical AD cases differed in distribution pattern from typical AD cases. Remarkably, plaque morphology and localization of neuroinflammation within the plaques was different between the two phenotypes. CONCLUSIONS: Our data show a different localization of neuroinflammatory markers and amyloid-beta plaques between AD phenotypes. In addition, these markers reflect the atypical distribution of tau pathology in atypical AD, suggesting that neuroinflammation might be a crucial link between amyloid-beta deposits, tau pathology, and clinical symptoms.


Assuntos
Doença de Alzheimer/patologia , Citocinas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Lobo Parietal/metabolismo , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/metabolismo , Autopsia , Proteínas de Ligação ao Cálcio , Proteínas do Sistema Complemento/metabolismo , Feminino , Humanos , Masculino , Proteínas dos Microfilamentos , Pessoa de Meia-Idade , Emaranhados Neurofibrilares/metabolismo , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA