Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 20(7): 4782-4791, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32511931

RESUMO

Ferromagnetic materials are the widely used source of spin-polarized electrons in spintronic devices, which are controlled by external magnetic fields or spin-transfer torque methods. However, with increasing demand for smaller and faster spintronic components utilization of spin-orbit phenomena provides promising alternatives. New materials with unique spin textures are highly desirable since all-electric creation and control of spin polarization is expected where the strength, as well as an arbitrary orientation of the polarization, can be defined without the use of a magnetic field. In this work, we use a novel spin-orbit crystal BiTeBr for this purpose. Because of its giant Rashba spin splitting, bulk spin polarization is created at room temperature by an electric current. Integrating BiTeBr crystal into graphene-based spin valve devices, we demonstrate for the first time that it acts as a current-controlled spin injector, opening new avenues for future spintronic applications in integrated circuits.

2.
Nat Commun ; 15(1): 4649, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821948

RESUMO

The unique electronic properties of topological quantum materials, such as protected surface states and exotic quasiparticles, can provide an out-of-plane spin-polarized current needed for external field-free magnetization switching of magnets with perpendicular magnetic anisotropy. Conventional spin-orbit torque (SOT) materials provide only an in-plane spin-polarized current, and recently explored materials with lower crystal symmetries provide very low out-of-plane spin-polarized current components, which are not suitable for energy-efficient SOT applications. Here, we demonstrate a large out-of-plane damping-like SOT at room temperature using the topological Weyl semimetal candidate TaIrTe4 with a lower crystal symmetry. We performed spin-torque ferromagnetic resonance (STFMR) and second harmonic Hall measurements on devices based on TaIrTe4/Ni80Fe20 heterostructures and observed a large out-of-plane damping-like SOT efficiency. The out-of-plane spin Hall conductivity is estimated to be (4.05 ± 0.23)×104 (ℏ / 2e) (Ωm)-1, which is an order of magnitude higher than the reported values in other materials.

3.
Adv Mater ; 35(16): e2209113, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36641649

RESUMO

The discovery of van der Waals (vdW) magnets opened a new paradigm for condensed matter physics and spintronic technologies. However, the operations of active spintronic devices with vdW ferromagnets are limited to cryogenic temperatures, inhibiting their broader practical applications. Here, the robust room-temperature operation of lateral spin-valve devices using the vdW itinerant ferromagnet Fe5 GeTe2 in heterostructures with graphene is demonstrated. The room-temperature spintronic properties of Fe5 GeTe2 are measured at the interface with graphene with a negative spin polarization. Lateral spin-valve and spin-precession measurements provide unique insights by probing the Fe5 GeTe2 /graphene interface spintronic properties via spin-dynamics measurements, revealing multidirectional spin polarization. Density functional theory calculations in conjunction with Monte Carlo simulations reveal significantly canted Fe magnetic moments in Fe5 GeTe2 along with the presence of negative spin polarization at the Fe5 GeTe2 /graphene interface. These findings open opportunities for vdW interface design and applications of vdW-magnet-based spintronic devices at ambient temperatures.

4.
Nat Commun ; 11(1): 3657, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694506

RESUMO

Unique electronic spin textures in topological states of matter are promising for emerging spin-orbit driven memory and logic technologies. However, there are several challenges related to the enhancement of their performance, electrical gate-tunability, interference from trivial bulk states, and heterostructure interfaces. We address these challenges by integrating two-dimensional graphene with a three-dimensional topological insulator (TI) in van der Waals heterostructures to take advantage of their remarkable spintronic properties and engineer proximity-induced spin-charge conversion phenomena. In these heterostructures, we experimentally demonstrate a gate-tunable spin-galvanic effect (SGE) at room temperature, allowing for efficient conversion of a non-equilibrium spin polarization into a transverse charge current. Systematic measurements of SGE in various device geometries via a spin switch, spin precession, and magnetization rotation experiments establish the robustness of spin-charge conversion in the Gr-TI heterostructures. Importantly, using a gate voltage, we reveal a strong electric field tunability of both amplitude and sign of the spin-galvanic signal. These findings provide an efficient route for realizing all-electrical and gate-tunable spin-orbit technology using TIs and graphene in heterostructures, which can enhance the performance and reduce power dissipation in spintronic circuits.

5.
ACS Nano ; 14(11): 15864-15873, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33136363

RESUMO

The utilization of large-area graphene grown by chemical vapor deposition (CVD) is crucial for the development of scalable spin interconnects in all-spin-based memory and logic circuits. However, the fundamental influence of the presence of multilayer graphene patches and their boundaries on spin dynamics has not been addressed yet, which is necessary for basic understanding and application of robust spin interconnects. Here, we report universal spin transport and dynamic properties in specially devised single layer, bilayer, and trilayer graphene channels and their layer boundaries and folds that are usually present in CVD graphene samples. We observe uniform spin lifetime with isotropic spin relaxation for spins with different orientations in graphene layers and their boundaries at room temperature. In all of the inhomogeneous graphene channels, the spin lifetime anisotropy ratios for spins polarized out-of-plane and in-plane are measured to be close to unity. Our analysis shows the importance of both Elliott-Yafet and D'yakonov-Perel' mechanisms with an increasing role of the latter mechanism in multilayer channels. These results of universal and isotropic spin transport on large-area inhomogeneous CVD graphene with multilayer patches and their boundaries and folds at room temperature prove its outstanding spin interconnect functionality, which is beneficial for the development of scalable spintronic circuits.

6.
Adv Mater ; 32(38): e2000818, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32776352

RESUMO

An outstanding feature of topological quantum materials is their novel spin topology in the electronic band structures with an expected large charge-to-spin conversion efficiency. Here, a charge-current-induced spin polarization in the type-II Weyl semimetal candidate WTe2 and efficient spin injection and detection in a graphene channel up to room temperature are reported. Contrary to the conventional spin Hall and Rashba-Edelstein effects, the measurements indicate an unconventional charge-to-spin conversion in WTe2 , which is primarily forbidden by the crystal symmetry of the system. Such a large spin polarization can be possible in WTe2 due to a reduced crystal symmetry combined with its large spin Berry curvature, spin-orbit interaction with a novel spin-texture of the Fermi states. A robust and practical method is demonstrated for electrical creation and detection of such a spin polarization using both charge-to-spin conversion and its inverse phenomenon and utilized it for efficient spin injection and detection in the graphene channel up to room temperature. These findings open opportunities for utilizing topological Weyl materials as nonmagnetic spin sources in all-electrical van der Waals spintronic circuits and for low-power and high-performance nonvolatile spintronic technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA