Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 7(4): e34533, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22514635

RESUMO

Based on experimental data from E. coli cultures, we have devised a mathematical model in the GMA-power law formalism that describes the central and L-carnitine metabolism in and between two steady states, non-osmotic and hyperosmotic (0.3 M NaCl). A key feature of this model is the introduction of type of kinetic order, the osmotic stress kinetic orders (g(OSn)), derived from the power law general formalism, which represent the effect of osmotic stress in each metabolic process of the model.By considering the values of the g(OSn) linked to each metabolic process we found that osmotic stress has a positive and determinant influence on the increase in flux in energetic metabolism (glycolysis); L-carnitine biosynthesis production; the transformation/excretion of Acetyl-CoA into acetate and ethanol; the input flux of peptone into the cell; the anabolic use of pyruvate and biomass decomposition. In contrast, we found that although the osmotic stress has an inhibitory effect on the transformation flux from the glycolytic end products (pyruvate) to Acetyl-CoA, this inhibition is counteracted by other effects (the increase in pyruvate concentration) to the extent that the whole flux increases. In the same vein, the down regulation exerted by osmotic stress on fumarate uptake and its oxidation and the production and export of lactate and pyruvate are reversed by other factors up to the point that the first increased and the second remained unchanged.The model analysis shows that in osmotic conditions the energy and fermentation pathways undergo substantial rearrangement. This is illustrated by the observation that the increase in the fermentation fluxes is not connected with fluxes towards the tricaboxylic acid intermediates and the synthesis of biomass. The osmotic stress associated with these fluxes reflects these changes. All these observations support that the responses to salt stress observed in E. coli might be conserved in halophiles.Flux evolution during osmotic adaptations showed a hyperbolic (increasing or decreasing) pattern except in the case of peptone and fumarate uptake by the cell, which initially decreased. Finally, the model also throws light on the role of L-carnitine as osmoprotectant.


Assuntos
Carnitina/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Modelos Teóricos , Cloreto de Sódio/farmacologia
2.
Mol Biosyst ; 6(4): 699-710, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20237648

RESUMO

L-(-)-carnitine can be synthesized from waste bioprecursors in the form of crotonobetaine. Such biotransformation is carried out in E. coli by the enzymes encoded by operons regulated by the cAMP receptor proteins. Non-phosphorylated sugars, such as glycerol are used as energy and carbon source since glucose inhibits cAMP synthesis. Until now little attention has been paid to the regulatory signaling structure that operates during the transition from a glucose-consuming, non-l-carnitine producing steady state, to a glycerol-consuming l-carnitine producing steady state. In this work we aim to elucidate and quantify the underlying regulatory mechanisms operating in the abolition of the glucose inhibiting effect. For this purpose we make use of the systemic approach by integrating the available information and our own experimentally generated data to construct a mathematical model. The model is built using power-law representation and is used as a platform to make predictive simulations and to assess the consistency of the regulatory structure of the overall process. The model is subsequently checked for quality through stability and a special, dynamic sensitivity analysis. The results show that the model is able to deal with the observed system transient phase. The model is multi-hierarchical, comprising the metabolic, gene expression, signaling and bioreactor levels. It involves variables and parameters of a very different nature that develop in different time scales and orders of magnitude. Some of the most relevant conclusions obtained are: (i) the regulatory interactions among glucose, glycerol and cAMP metabolism are far stronger than those present in the l-carnitine transport, production and degradation processes; (ii) carnitine biosynthesis is very sensitive to the cAMP signaling system since it reacts at very low cAMP receptor concentrations, and (iii) ATP is a critical factor in the transient dynamics. All these model-derived observations have been experimentally confirmed by separate studies. As a whole, the model contributes to our general understanding of the transient regulation through the signal regulatory structure, thus enabling more accurate optimization strategies to be used.


Assuntos
Carnitina/biossíntese , AMP Cíclico/metabolismo , Escherichia coli/metabolismo , Transporte Biológico Ativo , Reatores Biológicos , Carnitina/metabolismo , Escherichia coli/genética , Glucose/metabolismo , Glicerol/metabolismo , Cinética , Modelos Biológicos , Transdução de Sinais , Biologia de Sistemas
3.
J Biotechnol ; 149(3): 209-14, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20005909

RESUMO

The culture of common octopus (Octopus vulgaris), one important candidate to the aquaculture diversification, faces significant difficulties, mainly related with an inadequate first development stages diet. A mathematical model integrating disperse information on the nutrient composition throughout the species ontogenic development as well as on the effects of broodstock feeding and diet composition data of O. vulgaris, allowed us to predict the time evolution of paralarvae nutritional composition in terms of protein and lipid fractions and to design an optimal diet composition with the objective to ensure the maximal survival. The optimization routine showed that a diet based on the spider crab (Maja squinado) zoea composition is the most suitable for reaching the best survival rates. Results are verified by comparison with available experimental data. The obtained results and the prospective developments are a good example of how the systemic, quantitative model based approach can be used to analyse and contribute to the understanding of complex biological systems.


Assuntos
Aquicultura , Comportamento Alimentar , Modelos Biológicos , Octopodiformes/fisiologia , Animais , Mudança Climática
4.
BMC Syst Biol ; 2: 38, 2008 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-18439261

RESUMO

BACKGROUND: The amplification of signals, defined as an increase in the intensity of a signal through networks of intracellular reactions, is considered one of the essential properties in many cell signalling pathways. Despite of the apparent importance of signal amplification, there have been few attempts to formalise this concept. RESULTS: In this work we investigate the amplification and responsiveness of the JAK2-STAT5 pathway using a kinetic model. The recruitment of EpoR to the plasma membrane, activation by Epo, and deactivation of the EpoR/JAK2 complex are considered as well as the activation and nucleocytoplasmic shuttling of STAT5. Using qualitative biological knowledge, we first establish the structure of a general power-law model. We then generate a family of models from which we select suitable candidates. The parameter values of the model are estimated from experimental quantitative time-course data. The final model, whether it is conventional model with fixed predefined integer kinetic orders or a model with variable non-integer kinetic orders, is selected on the basis of a good agreement between simulations and the experimental data. The model is used to analyse the responsiveness and amplification properties of the pathway with sustained, transient, and oscillatory stimulation. CONCLUSION: The selected kinetic model predicts that the system acts as an amplifier with maximum amplification and sensitivity for input signals whose intensity match physiological values for Epo concentration and with duration in the range of one to 100 minutes. The response of the system reaches saturation for more intense and longer stimulation with Epo. We hypothesise that these properties of the system directly relate to the saturation of Epo receptor activation, its low recruitment to the plasma membrane and intense deactivation as predicted by the model.


Assuntos
Janus Quinase 2/metabolismo , Modelos Biológicos , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Transporte Ativo do Núcleo Celular , Animais , Sítios de Ligação , Linhagem Celular Transformada , Núcleo Celular/metabolismo , Eritropoetina/metabolismo , Humanos , Cinética , Camundongos , Valor Preditivo dos Testes , Receptores da Eritropoetina/metabolismo , Transdução de Sinais/fisiologia , Biologia de Sistemas/métodos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA