Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Neurobiol Dis ; 114: 120-128, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29501530

RESUMO

Synaptic neurodegeneration is thought to be an early event initiated by soluble ß-amyloid (Aß) aggregates that closely correlates with cognitive decline in Alzheimer disease (AD). Apolipoprotein ε4 (APOE4) is the most common genetic risk factor for both familial AD (FAD) and sporadic AD; it accelerates Aß aggregation and selectively impairs glutamate receptor function and synaptic plasticity. However, its molecular mechanisms remain elusive and these synaptic deficits are difficult to monitor. AD- and APOE4-dependent plasma biomarkers have been proposed, but synapse-related plasma biomarkers are lacking. We evaluated neuronal pentraxin 1 (NP1), a potential CNS-derived plasma biomarker of excitatory synaptic pathology. NP1 is preferentially expressed in brain and involved in glutamate receptor internalization. NP1 is secreted presynaptically induced by Aß oligomers, and implicated in excitatory synaptic and mitochondrial deficits. Levels of NP1 and its fragments were increased in a correlated fashion in both brain and plasma of 7-8 month-old E4FAD mice relative to E3FAD mice. NP1 was also found in exosome preparations and reduced by dietary DHA supplementation. Plasma NP1 was higher in E4FAD+ (APOE4+/+/FAD+/-) relative to E4FAD- (non-carrier; APOE4+/+/FAD-/-) mice, suggesting NP1 is modulated by Aß expression. Finally, relative to normal elderly, plasma NP1 was also elevated in patients with mild cognitive impairment (MCI) and elevated further in the subset who progressed to early-stage AD. In those patients, there was a trend towards increased NP1 levels in APOE4 carriers relative to non-carriers. These findings indicate that NP1 may represent a potential synapse-derived plasma biomarker relevant to early alterations in excitatory synapses in MCI and early-stage AD.


Assuntos
Doença de Alzheimer/sangue , Encéfalo/metabolismo , Proteínas do Tecido Nervoso/sangue , Sinapses/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Animais , Biomarcadores/sangue , Encéfalo/patologia , Proteína C-Reativa , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Sinapses/patologia
2.
Neurobiol Dis ; 75: 15-30, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25554688

RESUMO

Neonatal hypoxic-ischemic (HI) brain injury is a leading cause of mortality and morbidity in infants and children for which there is no promising therapy at present. Previously, we reported induction of neuronal pentraxin 1 (NP1), a novel neuronal protein of the long-pentraxin family, following HI injury in neonatal brain. Here, we report that genetic deletion of NP1 expression prevents HI injury in neonatal brain. Elevated expression of NP1 was observed in neurons, not in astrocytes, of the ipsilateral cortical layers (I-IV) and in the hippocampal CA1 and CA3 areas of WT brains following hypoxia-ischemia; brain areas that developed infarcts (at 24-48 h), showed significantly increased numbers of TUNEL-(+) cells and tissue loss (at 7 days). In contrast, NP1-KO mice showed no evidence of brain infarction and tissue loss after HI. The immunofluorescence staining of brain sections with mitochondrial protein COX IV and subcellular fractionation analysis showed increased accumulation of NP1 in mitochondria, pro-death protein Bax activation and NP1 co-localization with activated caspase-3 in WT, but not in the NP1-KO brains; corroborating NP1 interactions with the mitochondria-derived pro-death pathways. Disruption of NP1 translocation to mitochondria by NP1-siRNA in primary cortical cultures significantly reduced ischemic neuronal death. NP1 was immunoprecipitated with activated Bax [6A7] proteins; HI caused increased interactions of NP1 with Bax, thereby, facilitating Bax translocation to mitochondrial and neuronal death. To further delineate the specificity of NPs, we found that NP1 but not the NP2 induction is specifically involved in brain injury mechanisms and that knockdown of NP1 only results in neuroprotection. Furthermore, live in vivo T2-weighted magnetic resonance imaging (MRI) including fractional anisotropy (FA) mapping showed no sign of delayed brain injury or tissue loss in the NP1-KO mice as compared to the WT at different post-HI periods (4-24 weeks) examined; indicating a long-term neuroprotective efficacy of NP1 gene deletion. Collectively, our results demonstrate a novel mechanism of neuronal death and predict that inhibition of NP1 expression is a promising strategy to prevent hypoxic-ischemic injury in immature brain.


Assuntos
Encéfalo/metabolismo , Proteína C-Reativa/deficiência , Hipóxia-Isquemia Encefálica/metabolismo , Proteínas do Tecido Nervoso/deficiência , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/patologia , Proteína C-Reativa/genética , Caspase 3/metabolismo , Morte Celular/fisiologia , Hipóxia Celular/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Glucose/deficiência , Hipóxia-Isquemia Encefálica/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Neurônios/patologia , RNA Interferente Pequeno , Proteína X Associada a bcl-2/metabolismo
3.
BMC Neurosci ; 15: 133, 2014 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-25526743

RESUMO

BACKGROUND: Developing brain is highly susceptible to hypoxic-ischemic injury leading to severe neurological disabilities in surviving infants and children. Previously we reported induction of neuronal pentraxin 1 (NP1) in hypoxic-ischemic injury in neonatal brain and NP1 co-localization with the excitatory AMPA receptors GluR1 at the synaptic sites. However, how NP1 contributes to hypoxic-ischemic neuronal injury is not completely understood. RESULTS: Here we report that extracellular secretion of NP1 is required for ischemic neuronal death. Primary cortical neurons at days in vitro (DIV) 12 were subjected to oxygen glucose deprivation (OGD), an in vitro model of ischemic stroke, for different time periods (2-8 h). Oxygen glucose deprivation showed characteristic morphological changes of dying cells, OGD time-dependent induction of NP1 (2-4-fold) and increased neuronal death. In contrast, the NP1-KO cortical neurons were healthy and showed no sign of dying cells under similar conditions. NP1gene silencing by NP1-specific small interfering RNA (NP1-siRNA) protected cortical neurons from OGD-induced death. Conditioned media (CM) collected from OGD exposed WT cortical cultures caused neurotoxicity when added to a subset of DIV 12 normoxia control WT cortical cultures. In contrast, CM from OGD-exposed NP1-KO cultures did not induce cell toxicity in control WT cultures, suggesting a role for extracellular NP1 in neuronal death. However, NP1-KO neurons, which showed normal neuronal morphology and protection against OGD, sustained enhanced death following incubation with CM from WT OGD-exposed cultures. Western blot analysis of OGD exposed WT CM showed temporal increase of NP1 protein levels in the CM. Most strikingly, in contrast to NP1-KO CM, incubation of normal cortical cultures with CM from OGD exposed NP2-KO cultures showed neurotoxicity similar to that observed with CM from OGD exposed WT neuronal cultures. Western immunoblotting further confirmed the increased presence of NP1 protein in OGD-exposed NP2-KO CM. Live immunofluorescence analysis show intense cell surface clustering of NP1 with AMPA GluR1 receptors. CONCLUSIONS: Collectively, our results demonstrate that extracellular release of NP1 promote hypoxic-ischemic neuronal death possibly via surface clustering with GluR1 at synaptic sites and that NP1, not its family member NP2, is involved in the neuronal death mechanisms.


Assuntos
Isquemia Encefálica/fisiopatologia , Proteína C-Reativa/metabolismo , Morte Celular/fisiologia , Córtex Cerebral/fisiopatologia , Espaço Extracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Animais , Isquemia Encefálica/patologia , Proteína C-Reativa/genética , Hipóxia Celular/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Córtex Cerebral/patologia , Meios de Cultivo Condicionados/metabolismo , Glucose/deficiência , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Neurônios/patologia , Receptores de AMPA/metabolismo , Sinapses/fisiologia
4.
BMC Neurosci ; 15: 9, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24410996

RESUMO

BACKGROUND: Mitochondrial dysfunction has been linked to neuronal death and a wide array of neurodegenerative diseases. Previously, we have shown sex differences in mitochondria-mediated cell death pathways following hypoxia-ischemia. However, the role of mitochondrial biogenesis in hypoxic-ischemic brain injury between male vs. female has not been studied yet. RESULTS: Primary cerebellar granule neurons (CGNs), isolated from P7 male and female mice (CD-1) segregated based on visual inspection of sex, were exposed to 2 h of oxygen glucose deprivation (OGD) followed by 6-24 h of reoxygenation (Reox). Mitochondrial membrane potential (ΔΨm) and cellular ATP levels were reduced significantly in XX CGNs as compared to XY CGNs. Mitochondrial DNA (mtDNA) content was increased (>2-fold) at 2 h OGD in XY CGNs and remained increased up to 24 h of Reox compared to XX neurons and normoxia controls. The expression of mitochondrial transcription factor A (Tfam), the nuclear respiratory factor-1 (NRF-1) and the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a master regulator of mitochondrial biogenesis, were up-regulated (2-fold, ***p < 0.001) in XY CGNs but slightly reduced or remained unchanged in XX neurons. Similarly, the TFAM and PGC-1α protein levels and the mitochondrial proteins HSP60 and COXIV were increased in XY neurons only. Supportively, a balanced stimulation of fusion (Mfn 1and Mfn 2) and fission (Fis 1 and Drp 1) genes and enhanced formation of donut-shaped mitochondria were observed in XY CGNs vs. XX neurons (**p < 0.01). CONCLUSIONS: Our results demonstrate that OGD/Reox alters mitochondrial biogenesis and morphological changes in a sex-specific way, influencing neuronal injury/survival differently in both sexes.


Assuntos
Encéfalo/metabolismo , Glucose/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Mitocôndrias/metabolismo , Renovação Mitocondrial , Neurônios/metabolismo , Oxigênio/metabolismo , Animais , Apoptose , Encéfalo/patologia , Sobrevivência Celular , Feminino , Hipóxia-Isquemia Encefálica/patologia , Masculino , Camundongos , Mitocôndrias/patologia , Neurônios/patologia , Fatores Sexuais
5.
Neurobiol Dis ; 50: 59-68, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23069675

RESUMO

Developing brain is highly susceptible to hypoxic-ischemic (HI) injury leading to severe neurological disabilities in surviving infants and children. Previously, we have reported induction of neuronal pentraxin 1 (NP1), a novel neuronal protein of long-pentraxin family, following HI neuronal injury. Here, we investigated how this specific signal is propagated to cause the HI neuronal death. We used wild-type (WT) and NP1 knockout (NP1-KO) mouse hippocampal cultures, modeled in vitro following exposure to oxygen glucose deprivation (OGD), and in vivo neonatal (P9-10) mouse model of HI brain injury. Our results show induction of NP1 in primary hippocampal neurons following OGD exposure (4-8 h) and in the ipsilateral hippocampal CA1 and CA3 regions at 24-48 h post-HI compared to the contralateral side. We also found increased PTEN activity concurrent with OGD time-dependent (4-8 h) dephosphorylation of Akt (Ser473) and GSK-3ß (Ser9). OGD also caused a time-dependent decrease in the phosphorylation of Bad (Ser136), and Bax protein levels. Immunofluorescence staining and subcellular fractionation analyses revealed increased mitochondrial translocation of Bad and Bax proteins from cytoplasm following OGD (4 h) and simultaneously increased release of Cyt C from mitochondria followed by activation of caspase-3. NP1 protein was immunoprecipitated with Bad and Bax proteins; OGD caused increased interactions of NP1 with Bad and Bax, thereby, facilitating their mitochondrial translocation and dissipation of mitochondrial membrane potential (ΔΨ(m)). This NP1 induction preceded the increased mitochondrial release of cytochrome C (Cyt C) into the cytosol, activation of caspase-3 and OGD time-dependent cell death in WT primary hippocampal neurons. In contrast, in NP1-KO neurons there was no translocation of Bad and Bax from cytosol to the mitochondria, and no evidence of ΔΨ(m) loss, increased Cyt C release and caspase-3 activation following OGD; which resulted in significantly reduced neuronal death. Our results indicate a regulatory role of NP1 in Bad/Bax-dependent mitochondrial release of Cyt C and caspase-3 activation. Together our findings demonstrate a novel mechanism by which NP1 regulates mitochondria-driven hippocampal cell death; suggesting NP1 as a potential therapeutic target against HI brain injury in neonates.


Assuntos
Proteína C-Reativa/metabolismo , Hipocampo/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Animais , Western Blotting , Morte Celular/fisiologia , Células Cultivadas , Imunofluorescência , Imunoprecipitação , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Transdução de Sinais/fisiologia
6.
ASN Neuro ; 13: 17590914211012888, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34098747

RESUMO

Mitochondrial dysfunction is a key mechanism of cell death in hypoxic-ischemic brain injury. Neuronal pentraxin 1 (NP1) has been shown to play crucial roles in mitochondria-mediated neuronal death. However, the underlying mechanism(s) of NP1-induced mitochondrial dysfunction in hypoxia-ischemia (HI) remains obscure. Here, we report that NP1 induction following HI and its subsequent localization to mitochondria, leads to disruption of key regulatory proteins for mitochondrial biogenesis. Brain mitochondrial DNA (mtDNA) content and mtDNA-encoded subunit I of complex IV (mtCOX-1) expression was increased post-HI, but not the nuclear DNA-encoded subunit of complex II (nSDH-A). Up-regulation of mitochondrial proteins COXIV and HSP60 further supported enhanced mtDNA function. NP1 interaction with active Bax (Bax6A7) was increased in the brain after HI and in oxygen-glucose deprivation (OGD)-induced neuronal cultures. Importantly, NP1 colocalized with mitochondrial hexokinase II (mtHKII) following OGD leading to HKII dissociation from mitochondria. Knockdown of NP1 or SB216763, a GSK-3 inhibitor, prevented OGD-induced mtHKII dissociation and cellular ATP decrease. NP1 also modulated the expression of mitochondrial transcription factor A (Tfam) and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), regulators of mitochondrial biogenesis, following HI. Together, we reveal crucial roles of NP1 in mitochondrial biogenesis involving interactions with Bax[6A7] and mtHKII in HI brain injury.


Assuntos
Hexoquinase , Biogênese de Organelas , Proteína C-Reativa , Quinase 3 da Glicogênio Sintase , Hexoquinase/genética , Humanos , Hipóxia , Isquemia , Mitocôndrias , Proteínas do Tecido Nervoso , Proteína X Associada a bcl-2
7.
J Neurosci ; 28(6): 1427-33, 2008 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-18256263

RESUMO

Cortical development is associated with a series of events that involve axon and dendrite growth and synaptic formation. Although these developmental processes have been investigated in detail with histology, three-dimensional and quantitative imaging methods for rodent brains may be useful for genetic and pharmacological studies in which cortical developmental abnormalities are suspected. It has been shown that diffusion tensor imaging (DTI) can delineate the columnar organization of the fetal and early neonatal cortex based on a high degree of diffusion anisotropy along the columnar structures. This anisotropy is known to decrease during brain development. In this study, we applied DTI to developing rat brains at five developmental stages, postnatal days 0, 3, 7, 11 and 19, and used diffusion anisotropy as an index to characterize the structural change. Statistical analysis reveals four distinctive cortical areas that demonstrate a characteristic time course of anisotropy loss. This method may provide a means to delineate specific cortical areas and a quantitative method to detect abnormalities in cortical development in rodent pathological models.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/crescimento & desenvolvimento , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento Tridimensional/métodos , Animais , Anisotropia , Feminino , Gravidez , Ratos , Ratos Sprague-Dawley
8.
J Neurochem ; 106(3): 1357-70, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18485100

RESUMO

The inhibitors of apoptosis (IAPs) are emerging as key proteins in the control of cell death. In this study, we evaluated the expression and subcellular distribution of the antiapoptotic protein X-linked IAP (XIAP), and its interactions with the XIAP-associated factor 1 (XAF1) in neonatal rat brain following hypoxia-ischemia (HI). HI triggered the mitochondrial release of cytochrome c, Smac/DIABLO, and caspase 3 activation. Confocal microscopy detected XIAP-specific immunofluorescence in the cytoplasm under normal condition, which exhibited a diffuse distribution at 6 h post-HI and by 12 h the majority of XIAP was redistributed into the nucleus. XIAP nuclear translocation was confirmed by subcellular fractionations and by expressing FLAG-tagged XIAP in primary cortical neurons. Over-expression of XIAP significantly reduced, whereas XIAP gene silencing further enhanced cell death, demonstrating a specific requirement of cytoplasmic XIAP for cell survival. An elevated level of cytosolic XIAP was also evident under the conditions of neuroprotection by fibroblast growth factor-1. XAF1 expression was increased temporally and there was increased nuclear co-localization with XIAP in hypoxic-ischemic cells. XIAP co-immunoprecipitated > 9-fold XAF1 protein concurrent with decreased association with caspases 9 and 3. This is evidenced by the enhanced caspase 3 activity and neuronal death. Our findings implicate XIAP nuclear translocation in neuronal death and point to a novel mechanism in the regulation of hypoxic-ischemic brain injury.


Assuntos
Núcleo Celular/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Neurônios/citologia , Neurônios/fisiologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/biossíntese , Animais , Animais Recém-Nascidos , Apoptose/fisiologia , Morte Celular/fisiologia , Núcleo Celular/genética , Núcleo Celular/patologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Citoplasma/metabolismo , Citoplasma/fisiologia , Humanos , Hipóxia-Isquemia Encefálica/genética , Neurônios/metabolismo , Ratos , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/fisiologia
9.
Int J Dev Neurosci ; 26(1): 93-101, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17936538

RESUMO

Perinatal hypoxia-ischemia (HI) is the most common cause of various neurological disabilities in children with high societal cost. Hypoxic-ischemic brain damage is an evolving process and ample evidence suggests distinct difference between the immature and mature brain in the pathology and consequences of brain injury. Therefore, it is of utmost importance to better understand the mechanisms underlying the hypoxic-ischemic injury in neonatal brain to devise effective therapeutic strategies. Nonetheless, the mechanism(s) involved in this pathology in the developing brain remain inadequately understood. Effective neuroprotective strategies will include either inhibition of the death effector pathways or induction of their regulatory and survival promoting cellular proteins. Neuronal pentraxins (NPs) define a family of novel proteins "long pentraxins" that are exclusively expressed in the central neurons, and are homologous to the C-reactive and acute-phase proteins in the immune system. NPs have been shown to be involved in the excitatory synaptic remodeling. We found that the neuronal protein 'neuronal pentraxin 1' (NP1) is induced in neonatal rat brain following HI, and NP1 induction preceded the time of actual tissue loss in brain. In demonstrating this we also found that NP1 gene silencing is neuroprotective against hypoxia-induced neuronal death. This is the first evidence for a pathophysiological function of NP1 in central neurons. Our results suggest that NP1 is part of a death program triggered by HI. Most importantly, our findings of specific interactions of NP1 with the excitatory glutamate receptors AMPA GluR1 subunit and their co-localization suggest a role for this novel neuronal protein NP1 in the excitotoxic cascade. Blockade of AMPA-induced neuronal death following inhibition of NP1 expression further implicates a regulatory interaction between NP1 and AMPA glutamate receptors. Subsequent experiments using NP1 loss-of-function strategies, we have demonstrated specific requirements of NP1 induction in HI-induced neuronal death. Together our findings clearly identify a novel role for NP1 in the coupling between HI and cerebral cell death. Thus, NP1 could be a new molecular target in the central neurons for preventing hypoxic-ischemic neuronal death in developing brain. These very novel results could lead to more effective neuroprotective strategies against hypoxic-ischemic brain injury in neonates.


Assuntos
Lesões Encefálicas/etiologia , Lesões Encefálicas/prevenção & controle , Hipóxia-Isquemia Encefálica/complicações , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Animais , Proteína C-Reativa/genética , Proteína C-Reativa/metabolismo , Morte Celular/efeitos dos fármacos , Humanos , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia
10.
Mol Cell Biol ; 22(8): 2703-15, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11909963

RESUMO

Scatter factor/hepatocyte growth factor (SF/HGF) expression has been linked to malignant progression in glial neoplasms. Using two glioma cell lines, U373MG and SNB-19, we have demonstrated that SF/HGF stimulation allows cells to escape G(1)/G(0) arrest induced by contact inhibition or serum withdrawal. SF/HGF induced effects on two mechanisms of cell cycle regulation: suppression of the cyclin-dependent kinase inhibitor p27 and induction of the transcription factor c-Myc. Regulation of p27 by SF/HGF was posttranslational and is associated with p27 nuclear export. Transient transfections of U373MG and SNB-19 with wild-type p27 and a degradation-resistant p27T187A mutant were insufficient to induce cell cycle arrest, and SF/HGF downregulation of p27 was not necessary for cell cycle reentry. Analysis of Cdk2 kinase activity and p27 binding to cyclin E complexes in the presence of exogenous wild-type p27 or p27T187A demonstrated that Cdk2 activity was not necessary for SF/HGF-mediated G(1)/S transition. Similarly, overexpression of dominant-negative forms of Cdk2 did not block SF/HGF-triggered cell cycle progression. In contrast, SF/HGF transcriptionally upregulated c-Myc, and overexpression of c-Myc was able to prevent G(1)/G(0) arrest in the absence of SF/HGF. Transient overexpression of MadMyc, a dominant-negative chimera for c-Myc, caused G(1)/G(0) arrest in logarithmically growing cells and blocked SF/HGF-mediated G(1)/S transition. c-Myc did not exert its effects through p27 downregulation in these cell lines. SF/HGF induced E2F1-dependent transcription, the inhibition of which did not block SF/HGF-induced cell cycle progression. We conclude that SF/HGF prevents G(1)/G(0) arrest in glioma cell lines by a c-myc-dependent mechanism that is independent of p27, Cdk2, or E2F1.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Ciclo Celular/efeitos dos fármacos , Proteínas de Ligação a DNA , Glioblastoma/metabolismo , Glioblastoma/patologia , Fator de Crescimento de Hepatócito/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transporte Ativo do Núcleo Celular , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Inibição de Contato , Meios de Cultura , Quinase 2 Dependente de Ciclina , Inibidor de Quinase Dependente de Ciclina p27 , Quinases Ciclina-Dependentes/metabolismo , Fatores de Transcrição E2F , Fator de Transcrição E2F1 , Fase G1/efeitos dos fármacos , Fase G1/fisiologia , Glioblastoma/genética , Fator de Crescimento de Hepatócito/fisiologia , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fase S/efeitos dos fármacos , Fase S/fisiologia , Fatores de Transcrição/metabolismo , Transcrição Gênica , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/metabolismo
11.
J Neurosci ; 24(17): 4187-96, 2004 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-15115814

RESUMO

Neonatal hypoxic-ischemic brain injury is a major cause of neurological disability and mortality. Its therapy will likely require a greater understanding of the discrete neurotoxic molecular mechanism(s) triggered by hypoxia-ischemia (HI). Here, we investigated the role of neuronal pentraxin 1 (NP1), a member of a newly recognized subfamily of "long pentraxins," in the HI injury cascade. Neonatal brains developed marked infarcts in the ipsilateral cerebral hemisphere at 24 hr and showed significant loss of ipsilateral striatal, cortical, and hippocampal volumes at 7 d after HI compared with the contralateral hemisphere and sham controls. Immunofluorescence analyses revealed elevated neuronal expression of NP1 in the ipsilateral cerebral cortex from 6 hr to 7 d and in the hippocampal CA1 and CA3 regions from 24 hr to 7 d after HI. These same brain areas developed infarcts and terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling-positive cells within 24-48 hr of HI. In primary cortical neurons, NP1 protein was induced >2.5-fold (p < 0.001) after their exposure to hypoxia that caused approximately 30-40% neuronal death. Transfecting cortical neurons with antisense oligodeoxyribonucleotides directed against NP1 mRNA (NP1AS) significantly inhibited (p < 0.01) hypoxia-induced NP1 protein induction and neuronal death (p < 0.001), demonstrating a specific requirement of NP1 in hypoxic neuronal injury. NP1 protein colocalized and coimmunoprecipitated with the fast excitatory AMPA glutamate receptor subunit (GluR1) in primary cortical neurons, and hypoxia induced a time-dependent increase in NP1-GluR1 interactions. NPIAS also protected against AMPA-induced neuronal death (p < 0.05), implicating a role for NP1 in the excitotoxic cascade. Our results show that NP1 induction mediates hypoxic-ischemic injury probably by interacting with and modulating GluR1 and potentially other excitatory glutamate receptors.


Assuntos
Encéfalo/fisiopatologia , Proteína C-Reativa/metabolismo , Hipóxia-Isquemia Encefálica/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Proteína C-Reativa/genética , Hipóxia Celular , Células Cultivadas , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Hipóxia-Isquemia Encefálica/patologia , Hipóxia-Isquemia Encefálica/prevenção & controle , Marcação In Situ das Extremidades Cortadas , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurotoxinas/antagonistas & inibidores , Neurotoxinas/toxicidade , Oligonucleotídeos Antissenso/farmacologia , Ligação Proteica/fisiologia , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos F344 , Receptores de AMPA/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/antagonistas & inibidores , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/toxicidade
12.
Bone ; 76: 23-30, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25769649

RESUMO

Rett syndrome (RTT) is an X-linked neurodevelopmental disorder due to mutations affecting the neural transcription factor MeCP2. Approximately 50% of affected females have decreased bone mass. We studied osteoblast function using a murine model of RTT. Female heterozygote (HET) and male Mecp2-null mice were compared to wild type (WT) mice. Micro-CT of tibia from 5 week-old Mecp2-null mice showed significant alterations in trabecular bone including reductions in bone volume fraction (-29%), number (-19%), thickness (-9%) and connectivity density (-32%), and increases in trabecular separation (+28%) compared to WT. We also found significant reductions in cortical bone thickness (-18%) and in polar moment of inertia (-45%). In contrast, cortical and trabecular bone from 8 week-old WT and HET female mice were not significantly different. However, mineral apposition rate, mineralizing surface and bone formation rate/bone surface were each decreased in HET and Mecp2-null mice compared to WT mice. Histomorphometric analysis of femurs showed decreased numbers of osteoblasts but similar numbers of osteoclasts compared to WT, altered osteoblast morphology and decreased tissue synthesis of alkaline phosphatase in Mecp2-null and HET mice. Osteoblasts cultured from Mecp2-null mice, which unlike WT osteoblasts did not express MeCP2, had increased growth rates, but reductions in mRNA expression of type I collagen, Runx2 and Osterix compared to WT osteoblasts. These results indicate that MeCP2 deficiency leads to altered bone growth. Osteoblast dysfunction was more marked in Mecp2-null male than in HET female mice, suggesting that expression of MeCP2 plays a critical role in bone development.


Assuntos
Osso e Ossos/patologia , Modelos Animais de Doenças , Osteoblastos/patologia , Síndrome de Rett/patologia , Animais , Osso e Ossos/diagnóstico por imagem , Feminino , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Síndrome de Rett/diagnóstico por imagem , Microtomografia por Raio-X
13.
J Am Heart Assoc ; 2(1): e006098, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23525449

RESUMO

BACKGROUND: Trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) to excitatory synapses is critical to their synaptic functions. Previously, we have shown induction of neuronal pentraxin 1 (NP1) and its colocalization with AMPAR subunit GluR1 in hypoxic-ischemic (HI) brain injury. However, the role of NP1 in mediating GluR1 surface expression, trafficking, and clustering at synapses in HI neuronal death is unclear. METHODS AND RESULTS: Primary hippocampal neurons, isolated from wild-type (WT) and NP1-knockout (C57BL/6 background) mice at DIV 12 to 14 were exposed to 2 to 8 hours of oxygen glucose deprivation (OGD)-in vitro conditions that mimic human stroke. OGD exposure resulted in time-dependent induction of NP1 (∼4-fold), enhanced redistribution of AMAP GluR1 receptors at excitatory synapses, and increased neuronal death. We observed a significant increase in surface and synaptic GluR1 clusters that colocalized with PSD-95 on dendrites with a simultaneous decrease in internalized GluR1. Surface cross-linking with BS(3) showed enhanced membrane insertions of GluR1, and increased phosphorylation at Ser-845 further supported enhanced surface availability of GluR1 after OGD. NP1 protein colocalized with GluR1 and PSD-95, and OGD significantly increased their synaptic coclustering. Most strikingly, the genetic deletion of NP1 resulted in decreases in surface GluR1 cluster density, synaptic localization, phospho-GluR1 (Ser-845) levels, and neuronal death after OGD compared with WT neurons. AMPA (50 µmol/L) induced NP1 and significant cell death in WT but not in NP1-/- neurons. CONCLUSIONS: Our results indicate that NP1 plays a key role in synaptic clustering of GluR1, suggesting that targeting NP1 might be a practical approach to preventing ischemic brain damage.


Assuntos
Proteína C-Reativa/deficiência , Hipocampo/metabolismo , Hipóxia-Isquemia Encefálica/prevenção & controle , Proteínas do Tecido Nervoso/deficiência , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Animais , Proteína C-Reativa/genética , Morte Celular , Células Cultivadas , Proteína 4 Homóloga a Disks-Large , Guanilato Quinases/metabolismo , Hipocampo/patologia , Hipóxia-Isquemia Encefálica/genética , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Fosforilação , Transporte Proteico , Sinapses/patologia , Fatores de Tempo
14.
Cell Signal ; 23(4): 673-82, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21130869

RESUMO

Intracellular signaling pathways that regulate the production of lethal proteins in central neurons are not fully characterized. Previously, we reported induction of a novel neuronal protein neuronal pentraxin 1 (NP1) in neonatal brain injury following hypoxia-ischemia (HI); however, how NP1 is induced in hypoxic-ischemic neuronal death remains elusive. Here, we have elucidated the intracellular signaling regulation of NP1 induction in neuronal death. Primary cortical neurons showed a hypoxic-ischemia time-dependent increase in cell death and that NP1 induction preceded the actual neuronal death. NP1 gene silencing by NP1-specific siRNA significantly reduced neuronal death. The specificity of NP1 induction in neuronal death was further confirmed by using NP1 (-/-) null primary cortical neurons. Declines in phospho-Akt (i.e. deactivation) were observed concurrent with decreased phosphorylation of its downstream substrate GSK-3α/ß (at Ser21/Ser9) (i.e. activation) and increased GSK-3α and GSK-3ß kinase activities, which occurred prior to NP1 induction. Expression of a dominant-negative inhibitor of Akt (Akt-kd) blocked phosphorylation of GSK-3α/ß and subsequently enhanced NP1 induction. Whereas, overexpression of constitutively activated Akt (Akt-myr) or wild-type Akt (wtAkt) increased GSK-α/ß phosphorylation and attenuated NP1 induction. Transfection of neurons with GSK-3α siRNA completely blocked NP1 induction and cell death. Similarly, overexpression of the GSK-3ß inhibitor Frat1 or the kinase mutant GSK-3ßKM, but not the wild-type GSK-3ßWT, blocked NP1 induction and rescued neurons from death. Our findings clearly implicate both GSK-3α- and GSK-3ß-dependent mechanism of NP1 induction and point to a novel mechanism in the regulation of hypoxic-ischemic neuronal death.


Assuntos
Proteína C-Reativa/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Animais , Proteína C-Reativa/genética , Técnicas de Cultura de Células , Morte Celular , Hipóxia Celular , Sobrevivência Celular , Células Cultivadas , Ativação Enzimática , Técnicas de Silenciamento de Genes , Glicogênio Sintase Quinase 3 beta , Hipóxia-Isquemia Encefálica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Neurônios/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Ratos , Ratos Endogâmicos F344
15.
ASN Neuro ; 3(2)2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21382016

RESUMO

Neuronal death pathways following hypoxia-ischaemia are sexually dimorphic, but the underlying mechanisms are unclear. We examined cell death mechanisms during OGD (oxygen-glucose deprivation) followed by Reox (reoxygenation) in segregated male (XY) and female (XX) mouse primary CGNs (cerebellar granule neurons) that are WT (wild-type) or Parp-1 [poly(ADP-ribose) polymerase 1] KO (knockout). Exposure of CGNs to OGD (1.5 h)/Reox (7 h) caused cell death in XY and XX neurons, but cell death during Reox was greater in XX neurons. ATP levels were significantly lower after OGD/Reox in WT-XX neurons than in XY neurons; this difference was eliminated in Parp-1 KO-XX neurons. AIF (apoptosis-inducing factor) was released from mitochondria and translocated to the nucleus by 1 h exclusively in WT-XY neurons. In contrast, there was a release of Cyt C (cytochrome C) from mitochondria in WT-XX and Parp-1 KO neurons of both sexes; delayed activation of caspase 3 was observed in the same three groups. Thus deletion of Parp-1 shunted cell death towards caspase 3-dependent apoptosis. Delayed activation of caspase 8 was also observed in all groups after OGD/Reox, but was much greater in XX neurons, and caspase 8 translocated to the nucleus in XX neurons only. Caspase 8 activation may contribute to increased XX neuronal death during Reox, via caspase 3 activation. Thus, OGD/Reox induces death of XY neurons via a PARP-1-AIF-dependent mechanism, but blockade of PARP-1-AIF pathway shifts neuronal death towards a caspase-dependent mechanism. In XX neurons, OGD/Reox caused prolonged depletion of ATP and delayed activation of caspase 8 and caspase 3, culminating in greater cell death during Reox.


Assuntos
Morte Celular/fisiologia , Glucose/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Neurônios/fisiologia , Oxigênio/metabolismo , Caracteres Sexuais , Transdução de Sinais/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Fator de Indução de Apoptose/metabolismo , Caspase 3/metabolismo , Caspase 8/metabolismo , Cerebelo/citologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Neurônios/citologia , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo
16.
Neurobiol Dis ; 22(3): 677-90, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16635575

RESUMO

Perinatal hypoxia-ischemia (HI) is a major cause of neurological disability and mortality in infant and children. In the present study, we explored the neuroprotective efficacy of FGF-1 in a rat model of perinatal HI. Carotid ligation combined with hypoxia caused marked infarctions in the ipsilateral cerebral hemisphere with significant loss of ipsilateral striatal, cortical and hippocampal volumes. Morphological analyses revealed both apoptotic and necrotic form of neuronal death determined by Nissl histology, dark-field microscopy and TUNEL staining. HI induced a marked increase in activated caspase-9, caspase-3 and PARP cleavage at 12 h to 7 days after HI in brain areas displaying TUNEL (+) cells. In addition, expression of the anti-apoptotic protein X-linked inhibitor of apoptosis (XIAP) was decreased under similar conditions of HI. Expression of human FGF-1 in brain significantly reduced the extent of both apoptotic and necrotic injury caused by HI. FGF-1 attenuated the HI-induced increase in activated caspase-3, caspase-9 and cleaved PARP protein levels and markedly blocked the HI-induced decrease in XIAP expression under the conditions at which FGF-1 showed significant neuroprotection. These findings demonstrate that FGF-1 prevents the onset of both apoptotic and necrotic death in neurons otherwise "destined to die" following hypoxic-ischemic injury by intervening at the level of caspase-signaling cascades and by restoring prosurvival protein XIAP expression in central neurons.


Assuntos
Caspases/efeitos dos fármacos , Fator 1 de Crescimento de Fibroblastos/biossíntese , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/biossíntese , Animais , Animais Geneticamente Modificados , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Western Blotting , Transplante de Células , Modelos Animais de Doenças , Eletroforese em Gel de Poliacrilamida , Fator 1 de Crescimento de Fibroblastos/genética , Humanos , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Ratos , Transdução de Sinais/fisiologia , Transgenes
17.
Epilepsy Behav ; 7(2): 204-13, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16054439

RESUMO

Perinatal hypoxia-ischemia (HI) is the most common cause of cerebral palsy, and an important consequence of perinatal HI is epilepsy. Epilepsy is a disorder in which the balance between cerebral excitability and inhibition is tipped toward uncontrolled excitability. Selected neuronal circuits as well as certain populations of glial cells die from the excitotoxicity triggered by HI. Excitotoxicity, a term referring to cell death caused by overstimulation of the excitatory glutamate neurotransmitter receptors, plays a critical role in brain injury caused by perinatal HI. Ample evidence suggests distinct differences between the immature and mature brain with respect to the pathology and consequences of hypoxic-ischemic brain injury. Thus, the intrinsic vulnerability of specific cell types and systems in the developing brain is particularly important in determining the final pattern of damage and functional disability caused by perinatal HI. These patterns of neuronal vulnerability are associated with clinical syndromes of neurologic disorders such as cerebral palsy, epilepsy, and seizures. Recent studies have uncovered important molecular and cellular aspects of hypoxic-ischemic brain injury. The cascade of biochemical and histopathological events initiated by HI can extend for days to weeks after the insult is triggered, which may provide a "therapeutic window" for intervening in the pathogenesis in the developing brain. Activation of apoptotic programs accounts for the majority of HI-induced pathophysiology in neonatal brain disorders. New experimental approaches to protecting brain tissue from the effects of neonatal HI include administration of neuronal growth factors and effective inhibition of the death effector pathways, such as caspase cascade, and their downstream targets, which execute apoptosis and/or induction of their regulatory cellular proteins. Our recent findings that a novel neuronal protein, neuronal pentraxin 1 (NP1), is induced following HI in neonatal brain and that NP1 gene silencing is neuroprotective suggest that NP1 could be a new molecular target in the central neurons for preventing HI injury in developing brain. Most importantly, the specific interactions between NP1 and the excitatory glutamate receptors and their colocalization further implicate a role for this novel neuronal protein in the excitotoxic cascade. Recent experimental work suggests that these approaches may be effective during a longer therapeutic window after the insult, as they are acting on events that are relatively delayed, creating the potential for therapeutic interventions for these lifelong neurological disabilities.


Assuntos
Epilepsia/etiologia , Hipóxia-Isquemia Encefálica/complicações , Animais , Apoptose/fisiologia , Sobrevivência Celular , Epilepsia/genética , Epilepsia/patologia , Humanos , Hipóxia-Isquemia Encefálica/genética , Hipóxia-Isquemia Encefálica/prevenção & controle , Fatores de Crescimento Neural/uso terapêutico , Neurônios/fisiologia , Fármacos Neuroprotetores/uso terapêutico , Sistemas do Segundo Mensageiro/fisiologia , Sinapses/fisiologia
18.
Ann Neurol ; 55(5): 660-7, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15122706

RESUMO

Brain injury from inorganic Pb(2+) is considered the most important environmental childhood health hazard worldwide. The microvasculature of the developing brain is uniquely susceptible to high level Pb(2+) toxicity (ie, Pb(2+) encephalopathy) characterized by cerebellar hemorrhage, increased blood-brain barrier permeability, and vasogenic edema. However, the specific molecular mediators of Pb(2+) encephalopathy have been elusive. We found that Pb(2+) induces vascular endothelial growth factor/vascular permeability factor (VEGF) in cultured astrocytes (J Biol Chem, 2000;275:27874-27882). The study presented here asks if VEGF dysregulation contributes mechanistically to Pb(2+) encephalopathy. Neonatal rats exposed to 4% Pb-carbonate develop the histopathological features of Pb(2+) encephalopathy seen in children. Cerebellar VEGF expression increased approximately twofold (p < 0.01) concurrent with the development of cerebellar microvascular hemorrhage, enhanced vascular permeability to serum albumin, and vasogenic cerebellar edema (p < 0.01). No change in VEGF expression occurred in cerebral cortex that does not develop these histopathological complications of acute Pb(2+) intoxication. Pb(2+) exposure increased phosphorylation of cerebellar Flk-1 VEGF receptors and the Flk-1 inhibitor CEP-3967 completely blocked cerebellar edema formation without affecting microhemorrhage formation or blood-brain barrier permeability. This establishes that Pb(2+)-induced vasogenic edema formation develops via a Flk-1-dependent mechanism and suggests that the vascular permeability caused by Pb(2+) is Flk-1 independent.


Assuntos
Edema Encefálico/metabolismo , Intoxicação por Chumbo/metabolismo , Chumbo/toxicidade , Fator A de Crescimento do Endotélio Vascular/biossíntese , Doença Aguda , Animais , Animais Recém-Nascidos , Edema Encefálico/patologia , Feminino , Intoxicação por Chumbo/patologia , Ratos , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/biossíntese , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
19.
J Neurochem ; 81(2): 365-78, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12064484

RESUMO

Neuroprotective actions of scatter factor/hepatocyte growth factor (SF/HGF) have not been described. We examined the effects of SF/HGF in comparison to acidic fibroblast growth factor-1 (FGF-1) on N-methyl-D-aspartate (NMDA) and quinolinic acid (QUIN)-induced excitotoxicity in primary cerebellar granule neurons. Exposure to NMDA or QUIN for 24 h resulted in concentration-dependent cell death (p < 0.001) that was completely attenuated (p < 0.001) by pre-treatment of cells with SF/HGF (50 ng/mL) or FGF-1 (40 ng/mL). SF/ HGF and FGF-1 activated both Akt and MAP-kinase > threefold (p < 0.001). Neither SF/HGF nor FGF-1 activated cyclic AMP-response element binding protein (CREB), a downstream target of MAP-kinase, whereas brain-derived neurotrophic factor (BDNF) activated both MAP-kinase and CREB in granule neurons. Neuroprotection against NMDA or QUIN by SF/HGF and FGF-1 was negated by the addition of LY294002 (10 microM) or wortmannin (100 microM), two distinct inhibitors of phosphatidylinositol 3-kinase (P13-K), but not by the MAP-kinase kinase (MEK) inhibitor PD98059 (33 microm). Likewise, expression of a dominant-negative mutant of Akt (Akt-kd) completely prevented the neuroprotective actions of SF/HGF and FGF-1. Overexpression of a constitutively activated Akt (Akt-myr) or wild-type Akt (wtAkt) attenuated excitotoxic cell death. These data show that both SF/HGF and FGF-1 protect cerebellar granule neurons against excitotoxicity with similar potency in a P13-K/Akt-dependent and MAP-kinase/CREB-independent manner.


Assuntos
Cerebelo/efeitos dos fármacos , Fator 1 de Crescimento de Fibroblastos/farmacologia , Fator de Crescimento de Hepatócito/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Animais , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cerebelo/citologia , Cerebelo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Citoproteção , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Agonistas de Aminoácidos Excitatórios/toxicidade , Neurônios/citologia , Neurônios/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-met/biossíntese , Ratos , Ratos Endogâmicos Lew
20.
Proc Natl Acad Sci U S A ; 100(20): 11712-7, 2003 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-14504398

RESUMO

Protein kinase B/Akt possesses prosurvival and antiapoptotic activities and is involved in growth factor-mediated neuronal protection. In this study we establish Akt deactivation as a causal mediator of cell death. Akt deactivation occurs in multiple models of cell death including N-methyl-d-aspartate excitotoxicity, vascular stroke, and nitric oxide (NO)- and hydrogen peroxide (H2O2)-elicited death of HeLa, PC12, and Jurkat T cells. Akt deactivation characterizes both caspase-dependent and -independent cell death. Conditions rescuing cell death, such as treatment with poly(ADP-ribose) polymerase or NO synthase inhibitors and preconditioning with sublethal concentrations of N-methyl-d-aspartate, restore Akt activity. Infection of neurons with adenovirus expressing constitutively active Akt prevents excitotoxicity, whereas phosphatidylinositol 3-kinase inhibitors or infection with dominant negative Akt induce death of untreated neuronal cells.


Assuntos
Morte Celular/fisiologia , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas/fisiologia , Animais , Células Cultivadas , Regulação para Baixo , Inibidores Enzimáticos/farmacologia , Células HeLa , Humanos , N-Metilaspartato/toxicidade , Células PC12 , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA