Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Genet ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38196030

RESUMO

One of the recognized motor neuron degenerative disorders is amyotrophic lateral sclerosis (ALS). By now, several mutations have been reported and linked to ALS patients, some of which are induced by mutations in the human superoxide dismutase (hSOD1) gene. The ALS-provoking mutations are located throughout the structure of hSOD1 and promote the propensity to aggregate. Despite numerous investigations, the underlying mechanism related to the toxicity of mutant hSOD1 through the gain of a toxic function is still vague. We surveyed two mutant forms of hSOD1 by removing and adding cysteine at positions 146 and 72, respectively, to investigate the biochemical characterization and amyloid formation. Our findings predicted the harmful and destabilizing impact of two SOD1 mutants using multiple programs. The specific activity of the wild-type form was about 1.42- and 1.92-fold higher than that of C146R and G72C mutants, respectively. Comparative structural studies using CD spectropolarimetry, and intrinsic and ANS fluorescence showed alterations in secondary structure content, exposure of hydrophobic patches, and structural compactness of WT-hSOD1 vs. mutants. We demonstrated that two mutants were able to promote amyloid-like aggregates under amyloid induction circumstances (50-mM Tris-HCl pH 7.4, 0.2-M KSCN, 50-mM DTT, 37 °C, 190 rpm). Monitoring aggregates were done using an enhancement in thioflavin T fluorescence and alterations in Congo red absorption. The mutants accelerated fibrillation with subsequently greater fluorescence amplitude and a shorter lag time compared to WT-SOD1. These findings support the aggregation of ALS-associated SOD1 mutants as an integral part of ALS pathology.

2.
Biotechnol Appl Biochem ; 70(4): 1543-1553, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36807340

RESUMO

Recombinant human growth hormone (rhGH) is a therapeutic protein, associated with various human diseases, such as growth hormone deficiency. One of the interesting issues in the formulation of therapeutic proteins is excipients like disaccharides. In the current study, we try to compare the effect of sucrose and trehalose on the structure of rhGH in the liquid state at 25°C and 55°C. We use spectroscopic techniques including intrinsic and extrinsic fluorescence, Fourier-transform infrared (FTIR), circular dichroism (CD), dynamic light scattering (DLS), and time-resolved fluorescence. FTIR shows a slight change in the secondary structure of rhGH in presence of the sugars as sucrose is more effective than trehalose. Fluorescence investigations also confirm the enhancements of folding of rhGH and fluorescein isothiocyanate (FITC)-rhGH in presence of sucrose (1.5-fold more than trehalose). Also, we studied sucrose's effect on the rete of aggregation of rhGH using spectroscopy of Congo red, and fluorescence imaging of thioflavin T (ThT)-treated samples. It can be suggested that sucrose facilitates the amyloid formation of rhGH during 20 days of incubation at 37°C. This study will help to understand the growth hormone structural behavior in the liquid state in the presence of sucrose and trehalose in vitro.


Assuntos
Hormônio do Crescimento Humano , Humanos , Hormônio do Crescimento Humano/química , Sacarose/química , Trealose/química , Proteínas Recombinantes , Hormônio do Crescimento/química , Análise Espectral
3.
Nanomedicine ; 47: 102609, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36228994

RESUMO

Drug development for multiple sclerosis (MS) clinical management focuses on both neuroprotection and repair strategies, and is challenging due to low permeability of the blood-brain barrier, off-target distribution, and the need for high doses of drugs. The changes in the extracellular matrix have been documented in MS patients. It has been shown that the expression of nidogen-1 increases in MS lesions. Laminin forms a stable complex with nidogen-1 through a heptapeptide which was selected to target the lesion area in this study. Here we showed that the peptide binding was specific to the injured area following lysophosphatidylcholine (LPC) induced demyelination. In vivo data showed enhanced delivery of the peptide-functionalized gold nanoparticles (Pep-GNPs) to the lesion area. In addition, Pep-GNPs administration significantly enhanced myelin content and reduced astrocyte/microglia activation. Results demonstrated the possibility of using this peptide to target and treat lesions in patients suffering from MS.


Assuntos
Ouro , Nanopartículas Metálicas , Humanos , Bainha de Mielina , Peptídeos/farmacologia
4.
J Cell Sci ; 133(10)2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32461338

RESUMO

Detection of the apoptosis signature becomes central in understanding cell death modes. We present here a whole-cell biosensor that detects Apaf-1 association and apoptosome formation using a split-luciferase complementary assay. Fusion of N-terminal (Nluc) and C-terminal (Cluc)-fragments of firefly luciferase to the N-terminus of human Apaf-1 was performed in HEK293 cells by using CRISPR-Cas9 technology. This resulted in a luminescent form of the apoptosome that we named 'Lumiptosome'. During Apaf-1 gene editing, a high number of knock-in events were observed without selection, suggesting that the Apaf-1 locus is important for the integration of exogenous transgenes. Since activation of caspase-9 is directly dependent on the apoptosome formation, measured reconstitution of luciferase activity should result from the cooperative association of Nluc-Apaf-1 and Cluc-Apaf-1. Time-response measurements also confirmed that formation of the apoptosome occurs prior to activation of caspase-3. Additionally, overexpression of the Bcl2 apoptosis regulator in transgenic and normal HEK293 cells confirmed that formation of the Lumiptosome depends on release of cytochrome c Thus, HEK293 cells that stably express the Lumiptosome can be utilized to screen pro- and anti-apoptotic drugs, and to examine Apaf-1-dependent cellular pathways.


Assuntos
Apoptose , Apoptossomas , Apoptose/genética , Apoptossomas/metabolismo , Fator Apoptótico 1 Ativador de Proteases/genética , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Morte Celular , Citocromos c/genética , Citocromos c/metabolismo , Células HEK293 , Humanos
5.
Anal Chem ; 94(39): 13616-13622, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36130119

RESUMO

A naked-eye (equipment-free), label-free (cost-effective), and RNA extraction-free (to speed up) method for SARS-CoV-2 (as a case study of RNA viruses) detection is developed. Here, the DNA is being used as a template for in situ formation of anisotropic gold nanoparticles (AuNPs) without any chemical modification or DNA labeling. In this study, synthesized AuNPs for the direct detection of N-gene (nucleocapsid phosphoprotein) of SARS-CoV-2 are exploited. To this aim, antisense oligonucleotides (ASOs) with an extra poly guanine tail (G12) were designed. Thus, in the presence of its viral target RNA gene and ASOs@AuNPs-RNA hybridization, there was a red shift in its localized surface plasmon resonance (LSPR), and the intensity of the LSPR peak at 690 nm of throat swab samples was compared to the threshold cycle (Ct) of a reverse-transcriptase real-time polymerase chain reaction (RT-qPCR) (as a gold standard). Results suggested that the plasmonic biosensor can detect a very low amount of SARS-CoV-2 with a detection limit close to RT-qPCR. Simplicity of the new conjugation method with hybridization and annealing without amplification and denaturation steps enabled it to perform in a microfluidic paper-based analytical device.


Assuntos
COVID-19 , Nanopartículas Metálicas , COVID-19/diagnóstico , RNA Polimerases Dirigidas por DNA , Ouro , Guanina , Humanos , Oligonucleotídeos Antissenso , Fosfoproteínas , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/genética
6.
Anal Chem ; 94(51): 17757-17769, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36512507

RESUMO

We report the development of a label-, antibody-, enzyme-, and amplification-free ratiometric fluorescent biosensor for low-cost and rapid (less than 12 min) diagnosis of COVID-19 from isolated RNA samples. The biosensor is designed on the basis of cytosine-modified antisense oligonucleotides specific for either N gene or RdRP gene that can form silver nanoclusters (AgNCs) with both green and red emission on an oligonucleotide via a one-step synthesis process. The presence of the target RNA sequence of SARS-CoV-2 causes a dual-emission ratiometric signal transduction, resulting in a limit of detection of 0.30 to 10.0 nM and appropriate linear ranges with no need for any further amplification, fluorophore, or design with a special DNA fragment. With this strategy, five different ratiometric fluorescent probes are designed, and how the T/C ratio, the length of the stem region, and the number of cytosines in the loop structure and at the 3' end of the cluster-stabilizing template can affect the biosensor sensitivity is investigated. Furthermore, the effect of graphene oxide (GO) on the ratiometric behavior of nanoclusters is demonstrated and the concentration-/time-dependent new competitive mechanism between aggregation-caused quenching (ACQ) and aggregation-induced emission enhancement (AIE) for the developed ssDNA-AgNCs/GO nanohybrids is proposed. Finally, the performance of the designed ratiometric biosensor has been validated using the RNA extract obtained from more than 150 clinical samples, and the results have been confirmed by the FDA-approved reverse transcription-polymerase chain reaction (RT-PCR) diagnostic method. The diagnostic sensitivity and specificity of the best probe is more than >90%, with an area under the receiver operating characteristic (ROC) curve of 0.978.


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanopartículas Metálicas , Humanos , Corantes Fluorescentes/química , Prata/química , Nanopartículas Metálicas/química , COVID-19/diagnóstico , SARS-CoV-2/genética , DNA , RNA , Técnicas Biossensoriais/métodos , Espectrometria de Fluorescência/métodos
7.
Anal Biochem ; 638: 114510, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863712

RESUMO

The NLRP3 inflammasome is a key macromolecular complex of the innate immune system that activates the inflammatory signalling cascade in response to a wide range of stimuli. Structural studies have shown that the intracellular cytosolic receptor NLRP3 oligomerizes upon stimulation and serves as a scaffold to form the ASC filaments necessary for procaspase-1 activation. Despite the abundant structural evidences on NLRP3 inflammasome, the interactions of the NLRP3 Pyrin domain and its functional relevance are poorly understood. In this study, the split luciferase complementation assay is used as an alternative approach to investigate NLRP3PYD-NLRP3PYD interactions during inflammasome formation. Since the homotypic NLRP3 interaction is mainly based on electrostatic interactions, a phosphomimetic residue (S5) at the interface of the NLRP3PYDs interactions has been mutated to show a disruptive effect on luciferase activity. According to the results presented, the designed biosensor was able to monitor the NLRP3PYD-NLRP3PYD interaction in vitro. The current reporter assay not only provides a specific NLRP3PYD-NLRP3PYD assay to study the PYD-PYD interaction in vitro, but also provides a suitable system for screening chemicals and drugs to identify activators and inhibitors of NLRP3.


Assuntos
Técnicas Biossensoriais , Inflamassomos/metabolismo , Inflamação/metabolismo , Luciferases/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Humanos , Inflamassomos/química , Proteína 3 que Contém Domínio de Pirina da Família NLR/química , Domínio Pirina
8.
Biopolymers ; 113(7): e23491, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35560028

RESUMO

Non-viral gene carriers have shown noticeable potential in gene delivery because of limited side effects, biocompatibility, simplicity, and the ability to take advantage of electrostatic interactions. However, the low transfection rate of non-viral vectors under physiological conditions is controversial. This study aimed to decrease the transfection time using a static magnetic field. We used self-assembled cationic polysaccharides based on dextran-stearic acid-spermine (DSASP) conjugates associated with Fe3 O4 superparamagnetic nanoparticles to investigate their potential as gene carriers to promote the target delivery. Our findings illustrate that the magnetic nanoparticles are spherical with a positive surface charge and exhibit superparamagnetic behavior. The DSASP-pDNA/Fe3 O4 complexes offered a strong pDNA condensation, protection against DNase degradation, and significant cell viability in HEK 293T cells. Our results demonstrated that although conjugation of stearic acid could play a role in transfection efficiency, DSASP magnetic carriers with more spermine derivatives showed better affinity between the amphiphilic polymer and the negatively charged cell membrane.


Assuntos
Nanopartículas , Espermina , Dextranos , Técnicas de Transferência de Genes , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas/química , Tamanho da Partícula , Plasmídeos/genética , Polímeros , Espermina/química , Ácidos Esteáricos , Transfecção
9.
Biotechnol Appl Biochem ; 69(1): 41-50, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33226159

RESUMO

Recently, there has been a growing demand to develop portable devices for the fast detection of contaminants in food safety, healthcare, and environmental fields. Herein, two biosensing methods were designed by the use of nicotinamide adenine dinucleotide phosphate (NAD(P)H)-dependent TetX2 enzyme activity and thionine as an excellent electrochemical and colorimetric mediator/probe to monitor tetracycline (TC) in milk. The nanoporous glassy carbon electrode (NPGCE) modified with polythionine was first prepared by electrochemically and then TetX2 was immobilized onto the NPGCE using polyethyleneimine. The prepared biosensor provided a high electrocatalytic response toward NAD(P)H by significantly reducing its overpotential. The proposed biosensor exhibited a detection limit of 40 nM with a linear range of 0.1-0.8 µM for TC determination. Besides, the thionine probe was used to develop a novel colorimetric assay using a simple enzymatic color reaction within a few minutes. The limit of detection for TC was experimentally achieved as 60 nM, which was lower than the safety levels established by the World Health Organization (225 nM). The correlation between change in the color of the solution and the concentration of TC was used for quality control of milk samples, as confirmed by the standard high-performance liquid chromatography method. The results show the great potential of the proposed assays as portable instruments for on-site TC measurements.


Assuntos
Técnicas Biossensoriais , Colorimetria , Animais , Técnicas Eletroquímicas , Eletrodos , Leite/química , Tetraciclina/análise
10.
Nanomedicine ; 42: 102544, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35192939

RESUMO

Although chemotherapy has been known as a powerful medication for cancer treatment over the years, there is an important necessity for designing a novel targeted drug delivery system to overcome the drawbacks of this conventional method including undesired side effects on normal cells and drug resistance. The structural differences between the surface of cancerous and normal cells allow to design and engineer targeted drug delivery systems for cancer treatment. Integrins as one of the cell surface receptors over-expressed in cancer cells could potentially be suitable candidates for targeting cancer cells. In the present study, the novel nano-carriers based on designed MiRGD peptides and graphene quantum dots (GQDs) have been used for targeted delivery of doxorubicin (Dox) and curcumin (Cur) as hydrophilic and hydrophobic drug models, respectively. The prepared nano-composites were characterized by UV-vis and photoluminescence (PL) spectroscopies, Zeta-Sizer and transmission electron microscopy (TEM). Altogether, the results of cellular uptake and fluorimetric assays performed in HUVEC and HFF cells as models of αv integrin-over-expressed cancer and normal cells, respectively, besides in-vivo study on breast cancer bearing BALB/c mice, demonstrated that the prepared nano-composites can be considered as suitable multifunctional theranostic peptideticles for targeted drug delivery and tracking.


Assuntos
Neoplasias da Mama , Curcumina , Grafite , Pontos Quânticos , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Curcumina/farmacologia , Curcumina/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Feminino , Grafite/química , Humanos , Camundongos , Peptídeos/uso terapêutico , Medicina de Precisão , Pontos Quânticos/química , Nanomedicina Teranóstica
11.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35163573

RESUMO

Inflammasomes are multiprotein complexes that represent critical elements of the inflammatory response. The dysregulation of the best-characterized complex, the NLRP3 inflammasome, has been linked to the pathogenesis of diseases such as multiple sclerosis, type 2 diabetes mellitus, Alzheimer's disease, and cancer. While there exist molecular inhibitors specific for the various components of inflammasome complexes, no currently reported inhibitors specifically target NLRP3PYD homo-oligomerization. In the present study, we describe the identification of QM380 and QM381 as NLRP3PYD homo-oligomerization inhibitors after screening small molecules from the MyriaScreen library using a split-luciferase complementation assay. Our results demonstrate that these NLRP3PYD inhibitors interfere with ASC speck formation, inhibit pro-inflammatory cytokine IL1-ß release, and decrease pyroptotic cell death. We employed spectroscopic techniques and computational docking analyses with QM380 and QM381 and the PYD domain to confirm the experimental results and predict possible mechanisms underlying the inhibition of NLRP3PYD homo-interactions.


Assuntos
Anti-Inflamatórios , Proteína 3 que Contém Domínio de Pirina da Família NLR , Multimerização Proteica/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Células HEK293 , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/química , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
12.
Nanotechnology ; 32(14): 145101, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33321485

RESUMO

Targeted nanoparticle platforms designed to induce cell death by apoptosis can bypass the resistance mechanisms of cancer cells. With this in mind we have constructed a new cancer-targeting peptide-functionalized nanoparticle using gold nanoparticles (AuNPs) and a thioctic acid-DMPGTVLP peptide (TA-peptide) conjugate. Morphological analysis of the nanoparticles by transmission electron microscopy showed average diameters of about 3.52 nm and 26.2 nm for the AuNP core and shell, respectively. Strong affinity toward the nucleolin receptors of breast cancer cell lines MCF-7 and T47D was observed for the TA-peptide gold nanoparticles (TAP@AuNPs) based on IC50 values. Furthermore, the nanoparticles showed excellent hemocompatibility. Quantitative results of atomic absorption showed improved uptake of TAP@AuNPs. Treatment of the cells with TAP@AuNPS resulted in greater release of cytochrome c following caspase-3/7 activation compared with free TA-peptide. The cytosolic level of adenosine triphosphate for TAP@AuNPs was higher than in controls. Higher anti-tumor efficiency was observed for TAP@AuNPs than TA-peptide compared with phosphate-buffered saline after intratumoral injection in tumor-bearing mice. It can be concluded that the design and development of a receptor-specific peptide-AuNP platform will be valuable for theranostic applications in cancer nanomedicine.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ouro/química , Nanopartículas Metálicas/química , Animais , Linhagem Celular Tumoral , Humanos , Camundongos
13.
Biochem J ; 477(12): 2281-2293, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32478824

RESUMO

The pluripotency factor, OCT4 gene is a stemness marker that is involved in the tumorigenicity of different cancer types and knowing about molecular mechanisms of its regulation is crucially important. To date, a few microRNAs (miRNAs) are known to be regulators of OCT4 gene expression. Looking for the novel miRNAs which are capable of regulating OCT4 gene expression, our bioinformatics analysis introduced hsa-miR-3658 (miR-3658) as a bona fide candidate. Then, RT-qPCR results indicated that miR-3658 expression is decreased in colorectal cancer (CRC) tumor tissues, compared with normal pairs. Furthermore, RT-qPCR and western blot analysis showed that the OCT4 gene has been down-regulated following the miR-3658 overexpression. Consistently, dual-luciferase assay supported the direct interaction of miR-3658 with the 3'-UTR sequence of OCT4 gene. Unlike in HCT116 cells, overexpression of miR-3658 in SW480 cells brought about growth inhibition, cell cycle arrest and reduced cell migration, detected by flow cytometry, and scratch test assay. Overall, these findings demonstrated that miR-3658 as a tumor suppressor miRNA exerts its effect against OCT4 gene expression, and it has the potential of being used as a prognostic marker and therapeutic target against colorectal cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Movimento Celular , Proliferação de Células , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Ciclo Celular , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Humanos , Fator 3 de Transcrição de Octâmero/genética , Prognóstico , Células Tumorais Cultivadas
14.
Biochem Biophys Res Commun ; 532(1): 139-144, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-32828533

RESUMO

A major problem in the cancer treatment is the inherent resistance to chemotherapy. Identifying proteins that, once introduced in cancer cells, lead to a decreased efficiency of treatment outcome constitutes a major goal for biomedical research and applications. Survivin is a protein of IAPs family which its high expression can be a potential candidate for regulating cell death and survival in cancer therapy. To investigate the association of survivin increment and resistance to drug, survivin-reconstituted HEK (HEK-S) and HEK cells were used as in vitro models for the doxorubicin and docetaxel cellular response. Both morphological observation and survival assay exhibited that survivin reconstitution cells were significantly resistant to apoptotic stimuli by both drugs. It was observed that survivin overexpression has led to a decrease in caspase 3/7 activity and ROS level of cells but an increase in ATP content. Also, survivin-reconstituted cell displayed less red fluorescence compared to control after stimulation by drugs. Moreover, wound healing assay showed the ability of survivin to cause neighbouring cells to increase resistance to induction. These findings demonstrated survivin could be a potential target that can be inhibited the function of different drugs with various mechanisms in chemotherapy.


Assuntos
Apoptose/efeitos dos fármacos , Docetaxel/farmacologia , Doxorrubicina/farmacologia , Survivina/metabolismo , Trifosfato de Adenosina/metabolismo , Caspase 3/metabolismo , Caspase 7/metabolismo , Movimento Celular , Resistencia a Medicamentos Antineoplásicos , Células HEK293 , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo
15.
Biomed Eng Online ; 19(1): 79, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33076919

RESUMO

BACKGROUND: A bacterial biosensor refers to genetically engineered bacteria that produce an assessable signal in the presence of a physical or chemical agent in the environment. METHODS: We have designed and evaluated a bacterial biosensor expressing a luciferase reporter gene controlled by pbr and cadA promoters in Cupriavidus metallidurans (previously termed Ralstonia metallidurans) containing the CH34 and pI258 plasmids of Staphylococcus aureus, respectively, and that can be used for the detection of heavy metals. In the present study, we have produced and evaluated biosensor plasmids designated pGL3-luc/pbr biosensor and pGL3-luc/cad biosensor, that were based on the expression of luc+ and under the control of the cad promoter and the cadC gene of S. aureus plasmid pI258 and pbr promoter and pbrR gene from plasmid pMOL30 of Cupriavidus metallidurans. RESULTS: We found that the pGL3-luc/pbr biosensor may be used to measure lead concentrations between 1-100 µM in the presence of other metals, including zinc, cadmium, tin and nickel. The latter metals did not result in any significant signal. The pGL3-luc/cad biosensor could detect lead concentrations between 10 nM to 10 µM. CONCLUSIONS: This biosensor was found to be specific for measuring lead ions in both environmental and biological samples.


Assuntos
Proteínas de Bactérias/genética , Técnicas Biossensoriais/métodos , Cupriavidus/genética , Engenharia Genética , Chumbo/análise , Luciferases/genética , Regiões Promotoras Genéticas/genética , Meio Ambiente , Genes Reporter/genética , Humanos , Chumbo/sangue , Limite de Detecção
16.
Biotechnol Appl Biochem ; 67(3): 330-342, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31758724

RESUMO

The effects of 17 kinds of additive mixtures have been studied on refolding and aggregation of a model protein, lysozyme. Most of the prepared mixtures were efficient in inhibiting aggregation of the protein, and, surprisingly, four novel additive mixtures, i.e., lactic acid: l-arginine, lactic acid: l-glutamine, choline chloride: lactic acid, and imidazolium salt: ß-cyclodextrin as well as choline chloride: urea exhibited a more remarkable efficacy in suppressing aggregation. Among these, lactic acid: l-arginine was identified as the most efficient additive, and lactic acid: l-glutamine and choline chloride: lactic acid were inefficient to recover the enzyme activity. In contrast, choline chloride: ethylene glycol: imidazole, choline chloride: glycerol: imidazole, imidazole: betaine: ethylene glycol were found to be less effective mixtures in preventing enzyme aggregation. Totally, it was demonstrated that the protective effects of the mixtures were improved as their concentrations increased. The improvement was more remarkable for imidazolium salt: ß-cyclodextrin and choline chloride: urea, where the denatured lysozyme was reactivated and recovered up to 85% of its initial activity by enhancing their concentrations from 1 to 5% (V/V). It is suggested that such solution additives may be further employed as artificial chaperones to assist protein folding and stability.


Assuntos
Muramidase/química , Animais , Galinhas , Clara de Ovo , Muramidase/metabolismo , Agregados Proteicos
17.
Biologicals ; 63: 24-32, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31882195

RESUMO

MicroRNAs (miRNAs) are involved in the regulation of gene expression. In this study, we evaluated the use of overexpression of microRNA-375 (miR-375) and miR-122 in differentiating the Human Induced Pluripotent Stem Cells (hiPSCs) into functional hepatocyte-like cells (HLCs) without growth factors. We also compared the differentiation by miRNAs versus growth factors. HiPSCs were divided into two main groups: 1- HiPSCs were induced using lentiviral overexpression of miR-375 to differentiate into definitive endoderm (DE) cells in seven days. Then lentiviral overexpression of miR-122 was applied to differentiate DE cells into HLCs in additional 14 days. 2- HiPSCs were differentiated into HLCs using growth factors in 21 days. DE and hepatocyte markers were investigated by qRT-PCR, immunofluorescence, secretion analysis and LDL uptake assay. In the produced cells of both groups: the expression levels of DE markers (FOXA2 and SOX17) and hepatocyte markers (albumin, CK18, and HNF4a) in comparison with the undifferentiated hiPSCs increased significantly in seven and 21 days respectively. The albumin and urea secretion and LDL uptake were also detected. These results weren't significantly different between two groups. Therefore, we demonstrated that the over expression of miR-375 and then miR-122 could differentiate hiPSCs into functional HLCs without growth factors for developing cell-based therapies.


Assuntos
Diferenciação Celular , Expressão Gênica , Hepatócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/biossíntese , Animais , Linhagem Celular , Hepatócitos/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Lentivirus , Camundongos , MicroRNAs/genética , Transdução Genética
18.
Int J Toxicol ; 39(1): 30-38, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31868052

RESUMO

Aflatoxin (AF) B1 is a potent hepatotoxic, mutagenic, teratogenic mycotoxin and may cause immune suppression/dysregulation in humans and animals. Toxic effects of AFB1 on key mammalian immune cells (ie, leukocytes) needs to be mechanistically elucidated. In this study, along with the determination of AFB1's LC50 for certain leukocytes, we analyzed the effect of naturally occurring levels of AFB1 on apoptosis/necrosis of neutrophils, lymphocytes, and monocytes from healthy young humans (20- to 25-year-old male), dogs (1- to 2-year-old Persian/herd breed), and cattle (1- to 2-year-old cattle). Leukocytes were incubated for approximately 24 hours with naturally occurring levels of AFB1 (10 ng/mL). Intracellular adenosine triphosphate (ATP) depletion and caspase-3/7 activity were then determined by luciferase-dependent bioluminescence (BL). Furthermore, the necrotic leukocytes were measured using propidium iodide (PI)-related flow cytometry. A significant decrease (24%-45%, 33.2% ± 2.7%) in intracellular ATP content was observed in AFB1-treated neutrophils, lymphocytes, and monocytes in all studied mammals. Also, with such a low level (10 ng/mL) of AFB1, BL-based caspase-3/7 activity (BL intensity) in all 3 tested mammalian leukocyte lineages was noticeably increased (∼>2-fold). Flow cytometry-based PI staining (for viability assay) of the AFB1-treated leukocytes showed slightly/insignificantly more increase of necrotic (PI+) neutrophils, lymphocytes, and monocytes in human, dogs, and cattle. Even though in vitro LC50s for AFB1' (∼20,000-40,000 ng/mL) were approximately 2,000 to 4,000 times higher than background, these studies demonstrate leukocytes from human and farm/companion animals are sensitive to naturally occurring levels of AFB1. The observed in vitro ATP depletion and caspase activation in AFB1-exposed leukocytes can partially explain the underlying mechanisms of AFB1-induced immune disorders in mammals.


Assuntos
Trifosfato de Adenosina/metabolismo , Aflatoxina B1/toxicidade , Caspase 3/metabolismo , Caspase 7/metabolismo , Leucócitos/efeitos dos fármacos , Adulto , Animais , Bovinos , Células Cultivadas , Cães , Feminino , Humanos , Leucócitos/metabolismo , Masculino , Adulto Jovem
19.
Mikrochim Acta ; 187(12): 662, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33201336

RESUMO

The published version of this article, unfortunately, contains error in the affiliation. The authors express their sincere apology and corrected the affiliations in this article.

20.
Mikrochim Acta ; 187(11): 628, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33095319

RESUMO

A DNA-silver nanocluster with two distinct emissions is devised, in which this unique modality has been exploited to develop a novel nanosensor for transgenic DNA detection. TEM and fluorescence analysis revealed the formation of Ag nanoclusters with a size of around 2 nm, which exhibit dual-emissions at 550 nm (green) and 630 nm (red). Moreover, in the presence of the target sequence (CaMV 35S promoter) from the transgenic plant, the nanoclusters showed an enhancement in the green emission and a reduction in the red emission. This property provided a ratiometric-sensing platform which lacks unavoidable noises. The ratio of green to red fluorescence emission (G/R) of the nanoclusters exhibited a linear relation with the target concentration in the range 10 to 1000 nM. However, the control DNA did not affect this ratio, which clearly confirmed the selective response of the designed nanosensor. This sensing platform had a detection limit of 1.5 nM and identified the DNA of transgenic soybeans within a short time. The mechanistic evaluation of the nanoclusters further revealed the role of protonated cytosine bases in the dual emission behavior. Finally, unique features of the designed nanosensor may improve the current approaches for the development and manufacturing of GMO detection tools.


Assuntos
DNA de Plantas/química , DNA de Plantas/genética , Glycine max/genética , Nanopartículas Metálicas/química , Plantas Geneticamente Modificadas/genética , Prata/química , Animais , Técnicas Biossensoriais , Corantes Fluorescentes , Sensibilidade e Especificidade , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA