Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glia ; 71(11): 2511-2526, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37533369

RESUMO

The expressions of ion channels by Müller glial cells (MGCs) may change in response to various retinal pathophysiological conditions. There remains a gap in our understanding of MGCs' responses to photoreceptor degeneration towards finding therapies. The study explores how an inhibition of store-operated Ca2+ entry (SOCE) and its major component, Orai1 channel, in MGCs protects photoreceptors from degeneration. The study revealed increased Orai1 expression in the MGCs of retinal degeneration 10 (rd10) mice. Enhanced expression of oxidative stress markers was confirmed as a crucial pathological mechanism in rd10 retina. Inducing oxidative stress in rat MGCs resulted in increasing SOCE and Ca2+ release-activated Ca2+ (CRAC) currents. SOCE inhibition by 2-Aminoethoxydiphenyl borate (2-APB) protected photoreceptors in degenerated retinas. Finally, molecular simulations proved the structural and dynamical features of 2-APB to the target structure Orai1. Our results provide new insights into the physiology of MGCs regarding retinal degeneration and shed a light on SOCE and Orai1 as new therapeutic targets.


Assuntos
Canais de Cálcio , Degeneração Retiniana , Ratos , Camundongos , Animais , Canais de Cálcio/metabolismo , Células Ependimogliais/metabolismo , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/prevenção & controle , Cálcio/metabolismo , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Sinalização do Cálcio/fisiologia
2.
Med J Islam Repub Iran ; 37: 26, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180860

RESUMO

Background: Gamification is the process of game thinking and game mechanics to attract learners and solve problems. It is a unique growing phenomenon in education and training programs. Educational games, by application of game design and game elements in learning environments, motivate students to learn and improve the teaching and learning process. Herein, this scoping review presents an overview of the theoretical underpinnings of gamification that is crucial in understanding the theoretical pillar of successful educational games. Methods: This scoping review follows Arksey and O'Malley's stages of scoping review. In this review, the gamification in medical education articles that implicitly or explicitly presented underpinning learning theories of gamification in medical education was retrieved. So, keywords such as gamification, learning theories, higher education, and medical education were searched in Scopus, PubMed, WEB OF SCIENCE, EMBASE, ERIC, and Cochrane Library from 1998 to March 2019. Results: The search indicated 5416 articles which were narrowed down by title and abstract relatedness. 464 articles entered the second phase of the study and after reviewing their full text, finally, 10 articles which were explicitly and implicitly reported the underpinning learning theories remained. Conclusion: Gamification is a strategy using game design techniques for non-game experiences for more effective learning and provides a more attractive environment for teaching and learning. Designing gamification based on learning theories (behavioral, cognitive, and constructivist), makes them more efficient, and the application of learning theories in designing gamification is recommended.

3.
Acta Neuropathol ; 138(1): 67-84, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30937520

RESUMO

Amyotrophic lateral sclerosis (ALS) is a lethal disease characterized by motor neuron degeneration and associated with aggregation of nuclear RNA-binding proteins (RBPs), including FUS. How FUS aggregation and neurodegeneration are prevented in healthy motor neurons remain critically unanswered questions. Here, we use a combination of ALS patient autopsy tissue and induced pluripotent stem cell-derived neurons to study the effects of FUS mutations on RBP homeostasis. We show that FUS' tendency to aggregate is normally buffered by interacting RBPs, but this buffering is lost when FUS mislocalizes to the cytoplasm due to ALS mutations. The presence of aggregation-prone FUS in the cytoplasm causes imbalances in RBP homeostasis that exacerbate neurodegeneration. However, enhancing autophagy using small molecules reduces cytoplasmic FUS, restores RBP homeostasis and rescues motor function in vivo. We conclude that disruption of RBP homeostasis plays a critical role in FUS-ALS and can be treated by stimulating autophagy.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Autofagia/fisiologia , Neurônios Motores/patologia , Citoplasma/metabolismo , Humanos , Corpos de Inclusão/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Mutação/genética , Proteína FUS de Ligação a RNA/metabolismo
4.
Cell Physiol Biochem ; 51(1): 278-289, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30453283

RESUMO

BACKGROUND/AIMS: The neurodegenerative disease Chorea-Acanthocytosis (ChAc) is caused by loss-of-function-mutations of the chorein-encoding gene VPS13A. In ChAc neurons transcript levels and protein abundance of Ca2+ release activated channel moiety (CRAC) Orai1 as well as its regulator STIM1/2 are decreased, resulting in blunted store operated Ca2+-entry (SOCE) and enhanced suicidal cell death. SOCE is up-regulated and cell death decreased by lithium. The effects of lithium are paralleled by upregulation of serum & glucocorticoid inducible kinase SGK1 and abrogated by pharmacological SGK1 inhibition. In other cell types SGK1 has been shown to be partially effective by upregulation of NFκB, a transcription factor stimulating the expression of Orai1 and STIM. The present study explored whether pharmacological inhibition of NFκB interferes with Orai1/STIM1/2 expression and SOCE and their upregulation by lithium in ChAc neurons. METHODS: Cortical neurons were differentiated from induced pluripotent stem cells generated from fibroblasts of ChAc patients and healthy volunteers. Orai1 and STIM1 transcript levels and protein abundance were estimated from qRT-PCR and Western blotting, respectively, cytosolic Ca2+-activity ([Ca2+]i) from Fura-2-fluorescence, SOCE from increase of [Ca2+]i following Ca2+ re-addition after Ca2+-store depletion with sarco-endoplasmatic Ca2+-ATPase inhibitor thapsigargin (1µM), as well as CRAC current utilizing whole cell patch clamp recording. RESULTS: Orai1 and STIM1 transcript levels and protein abundance as well as SOCE and CRAC current were significantly enhanced by lithium treatment (2 mM, 24 hours). These effects were reversed by NFκB inhibitor wogonin (50 µM). CONCLUSION: The stimulation of expression and function of Orai1/STIM1/2 by lithium in ChAc neurons are disrupted by pharmacological NFκB inhibition.


Assuntos
Cálcio/metabolismo , Flavanonas/farmacologia , Expressão Gênica/efeitos dos fármacos , Lítio/farmacologia , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , ATPases Transportadoras de Cálcio/antagonistas & inibidores , ATPases Transportadoras de Cálcio/metabolismo , Diferenciação Celular , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Potenciais da Membrana/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Proteínas de Neoplasias/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteína ORAI1/genética , Técnicas de Patch-Clamp , Molécula 1 de Interação Estromal/genética , Tapsigargina/farmacologia
5.
Cell Physiol Biochem ; 42(6): 2169-2181, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28813704

RESUMO

BACKGROUND: TGFß1, a decisive regulator of megakaryocyte maturation and platelet formation, has previously been shown to up-regulate both, store operated Ca2+ entry (SOCE) and Ca2+ extrusion by Na+/Ca2+ exchange. The growth factor thus augments the increase of cytosolic Ca2+ activity ([Ca2+]i) following release of Ca2+ from intracellular stores and accelerates the subsequent decline of [Ca2+]i. The effect on SOCE is dependent on a signaling cascade including p38 kinase, serum & glucocorticoid inducible kinase SGK1, and nuclear factor NFκB. The specific Na+/Ca2+ exchanger isoforms involved and the signalling regulating the Na+/Ca2+ exchangers remained, however elusive. The present study explored, whether TGFß1 influences the expression and function of K+ insensitive (NCX) and K+ sensitive (NCKX) Na+/Ca2+ exchangers, and aimed to shed light on the signalling involved. METHODS: In human megakaryocytic cells (MEG01) RT-PCR was performed to quantify NCX/NCKX isoform transcript levels, [Ca2+]i was determined by Fura-2 fluorescence, and Na+/Ca2+ exchanger activity was estimated from the increase of [Ca2+]i following switch from an extracellular solution with 130 or 90 mM Na+ and 0 mM Ca2+ to an extracellular solution with 0 Na+ and 2 mM Ca2+. K+ concentration was 0 mM for analysis of NCX and 40 mM for analysis of NCKX. RESULTS: TGFß1 (60 ng/ml, 24 h) significantly increased the transcript levels of NCX1, NCKX1, NCKX2 and NCKX5. Moreover, TGFß1 (60 ng/ml, 24 h) significantly increased the activity of both, NCX and NCKX. The effect of TGFß1 on NCX and NCKX transcript levels and activity was significantly blunted by p38 kinase inhibitor Skepinone-L (1 µM), the effect on NCX and NCKX activity further by SGK1 inhibitor GSK-650394 (10 µM) and NFκB inhibitor Wogonin (100 µM). CONCLUSIONS: TGFß1 markedly up-regulates transcription of NCX1, NCKX1, NCKX2, and NCKX5 and thus Na+/Ca2+ exchanger activity, an effect requiring p38 kinase, SGK1 and NFκB.


Assuntos
Proteínas Imediatamente Precoces/metabolismo , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Regulação para Cima/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Benzoatos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Cálcio/metabolismo , Linhagem Celular , Dibenzocicloeptenos/farmacologia , Flavanonas/farmacologia , Humanos , Proteínas Imediatamente Precoces/antagonistas & inibidores , Proteínas Imediatamente Precoces/genética , Megacariócitos/citologia , Megacariócitos/efeitos dos fármacos , Megacariócitos/metabolismo , Microscopia de Fluorescência , NF-kappa B/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Reação em Cadeia da Polimerase em Tempo Real , Trocador de Sódio e Cálcio/genética , Transcrição Gênica/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
6.
Cell Physiol Biochem ; 42(3): 1240-1251, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28683437

RESUMO

BACKGROUND/AIMS: Alterations of cytosolic Ca2+-activity ([Ca2+]i) are decisive in the regulation of tumor cell proliferation, migration and survival. Transport processes participating in the regulation of [Ca2+]i include Ca2+ extrusion through K+-independent (NCX) and/or K+-dependent (NCKX) Na+/Ca2+-exchangers. The present study thus explored whether medulloblastoma cells express Na+/Ca2+-exchangers, whether expression differs between therapy sensitive D283 and therapy resistant UW228-3 medulloblastoma cells, and whether Na+/Ca2+-exchangers participate in the regulation of cell survival. METHODS: In therapy sensitive D283 and therapy resistant UW228-3 medulloblastoma cells transcript levels were estimated by RT-PCR, protein abundance by Western blotting, cytosolic Ca2+-activity ([Ca2+]i) from Fura-2-fluorescence, Na+/ Ca2+-exchanger activity from the increase of [Ca2+]i (Δ[Ca2+]i) and from whole cell current (Ica) following abrupt replacement of Na+ containing (130 mM) and Ca2+ free by Na+ free and Ca2+ containing (2 mM) extracellular perfusate as well as cell death from PI -staining and annexin-V binding in flow cytometry. RESULTS: The transcript levels of NCX3, NCKX2, and NCKX5, protein abundance of NCX3, slope and peak of Δ[Ca2+]i as well as Ica were significantly lower in therapy sensitive D283 than in therapy resistant UW228-3 medulloblastoma cells. The Na+/Ca2+-exchanger inhibitor KB-R7943 (10 µM) significantly blunted Δ[Ca2+]i, and augmented the ionizing radiation-induced apoptosis but did not significantly modify clonogenicity of medulloblastoma cells. Apoptosis was further enhanced by NCX3 silencing. CONCLUSIONS: Na+/Ca2+-exchanger activity significantly counteracts apoptosis but does not significantly affect clonogenicity after radiation of medulloblastoma cells.


Assuntos
Neoplasias Cerebelares/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Meduloblastoma/tratamento farmacológico , Trocador de Sódio e Cálcio/genética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Linhagem Celular Tumoral , Neoplasias Cerebelares/genética , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Humanos , Meduloblastoma/genética , Técnicas de Patch-Clamp , Isoformas de Proteínas/metabolismo , Sódio/metabolismo , Trocador de Sódio e Cálcio/análise
7.
Cell Physiol Biochem ; 42(5): 1985-1998, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28793283

RESUMO

BACKGROUND AND PURPOSE: The high potency antipsychotic drug trifluoperazine (10-[3-(4-methyl-1-piperazinyl)-propyl]-2-(trifluoromethyl)-(10)H-phenothiazine dihydrochloride; TFP) may either counteract or promote suicidal cell death or apoptosis. Similar to apoptosis, erythrocytes may enter eryptosis, characterized by phosphatidylserine exposure at the cell surface and cell shrinkage. Eryptosis can be stimulated by an increase in cytoplasmic Ca2+ concentration ([Ca2+]i) and inhibited by nitric oxide (NO). We explored whether TFP treatment of erythrocytes induces phosphatidylserine exposure, cell shrinkage, and calcium influx, whether it impairs S-nitrosylation and whether these effects are inhibited by NO. METHODS: Phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, and protein nitrosylation from fluorescence switch of the Bodipy-TMR/Sypro Ruby signal. RESULTS: Exposure of human erythrocytes to TFP significantly enhanced the percentage of annexin-V-binding cells, raised [Ca2+]i, and decreased S-nitrosylation. The effect of TFP on annexin-V-binding was not affected by removal of extracellular Ca2+ alone, but was significantly inhibited by pre-treatment with sodium nitroprusside (SNP), an effect significantly augmented by additional removal of extracellular Ca2+. A 3 hours treatment with 0.1 µM Ca2+ ionophore ionomycin triggered annexin-V-binding and cell shrinkage, effects fully reversed by removal of extracellular Ca2+. CONCLUSIONS: TFP induces eryptosis and decreases protein S-nitrosylation, effects blunted by nitroprusside. The effect of nitroprusside is attenuated in the presence of extracellular Ca2+.


Assuntos
Eriptose/efeitos dos fármacos , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Trifluoperazina/toxicidade , Potenciais de Ação/efeitos dos fármacos , Cálcio/metabolismo , Tamanho Celular/efeitos dos fármacos , Membrana Eritrocítica/efeitos dos fármacos , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/fisiologia , Hemólise/efeitos dos fármacos , Humanos , Ionomicina/toxicidade , Microscopia de Fluorescência , Óxido Nítrico/metabolismo , Técnicas de Patch-Clamp , Fosfatidilserinas/toxicidade , Processamento de Proteína Pós-Traducional/efeitos dos fármacos
8.
Neurosignals ; 25(1): 15-25, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28743131

RESUMO

BACKGROUND/AIMS: Retinal prostheses use electrical stimulation to restore functional vision to patients blinded by retinitis pigmentosa. A key detail is the spatial pattern of ganglion cells activated by stimulation. Therefore, we characterized the spatial extent of network-mediated electrical activation of retinal ganglion cells (RGCs) in the epiretinal monopolar electrode configuration. METHODS: Healthy mouse RGC activities were recorded with a micro-electrode array (MEA). The stimuli consisted of monophasic rectangular cathodic voltage pulses and cycling full-field light flashes. RESULTS: Voltage tuning curves exhibited significant hysteresis, reflecting adaptation to electrical stimulation on the time scale of seconds. Responses decreased from 0 to 300 µm, and were also dependent on the strength of stimulation. Applying the Rayleigh criterion to the half-width at half-maximum of the electrical point spread function suggests a visual acuity limit of no better than 20/946. Threshold voltage showed only a modest increase across these distances. CONCLUSION: The existence of significant hysteresis requires that future investigations of electrical retinal stimulation control for such long-memory adaptation. The spread of electrical activation beyond 200 µm suggests that neighbouring electrodes in epiretinal implants based on indirect stimulation of RGCs may be indiscriminable at interelectrode spacings as large as 400 µm.


Assuntos
Potenciais de Ação/fisiologia , Retina/fisiologia , Retinose Pigmentar/fisiopatologia , Animais , Estimulação Elétrica , Camundongos , Próteses Visuais
9.
Cell Physiol Biochem ; 38(4): 1643-51, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27119652

RESUMO

BACKGROUND/AIMS: Oscillations of cytosolic Ca2+ activity ([Ca2+]i) participate in the orchestration of tumor cell proliferation. [Ca2+]i could be increased by intracellular Ca2+ release followed by store-operated Ca2+-entry (SOCE). [Ca2+]i could be decreased by Ca2+ extrusion via Na+/Ca2+ exchange. Mechanisms accomplishing SOCE include the pore-forming ion channel unit Orai1 and its regulator STIM1, Na+/Ca2+ exchanger isoforms include NCX1. In MCF-7 breast carcinoma cells Orai1 and NCX1 have previously been shown to be modified by pharmacological inhibition of Janus activated kinase JAK2. The present study explored whether SOCE and Na+/Ca2+ exchange are similarly sensitive to pharmacological JAK3 inhibition. METHODS: MCF-7 breast carcinoma cells were studied in the absence and presence of the JAK3 inhibitor WHI-P154 (22 µM). [Ca2+]i was estimated from Fura-2-fluorescence, SOCE from increase of [Ca2+]i following Ca2+ re-addition after Ca2+-store depletion with sarcoendoplasmatic Ca2+-ATPase (SERCA) inhibitor thapsigargin (1 µM), and Na+/Ca2+ exchanger activity from increase of [Ca2+]i following extracellular Na+ removal. Transcript levels were quantified with RT-PCR. RESULTS: Addition of ATP (100 µM) was followed by a rapid increase of [Ca2+]i, which was significantly blunted by WHI-P154. Thapsigargin-induced intracellular Ca2+ release was not appreciably influenced by WHI-P154. Subsequent SOCE was, however, significantly blunted by WHI-P154. WHI-P154 further significantly decreased Orai1 transcript levels. The increase of [Ca2+]i following extracellular Na+-removal and the NCX1 transcript levels were similarly decreased by WHI-P154. CONCLUSIONS: The JAK3 inhibitor WHI-P154 decreases both, Orai1 and NCX1 transcript levels and thus impairs SOCE and Na+/Ca2+ exchange.


Assuntos
Cálcio/metabolismo , Janus Quinase 3/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Trifosfato de Adenosina/farmacologia , Neoplasias da Mama , Regulação para Baixo/efeitos dos fármacos , Feminino , Fura-2/química , Fura-2/metabolismo , Humanos , Janus Quinase 3/antagonistas & inibidores , Células MCF-7 , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Quinazolinas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Trocador de Sódio e Cálcio/genética , Espectrometria de Fluorescência , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Tapsigargina/farmacologia
10.
Cell Physiol Biochem ; 39(3): 1031-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27537208

RESUMO

BACKGROUND/AIMS: The pleotropic functions of the large conductance Ca2+-activated K+ channels (maxi K+ channel or BK channels) include regulation of neuronal excitation and cell volume. Kinases participating in those functions include the glycogen synthase kinase GSK3 ß which is under negative control of protein kinase B (PKB/Akt). GSK3ß is inhibited by the antidepressant Lithium. The present study thus explored whether GSK3ß modifies the activity of BK channels. METHODS: cRNA encoding the Ca2+ insensitive BK channel mutant BKM513I+Δ899-903 was injected into Xenopus laevis oocytes without or with additional injection of cRNA encoding wild-type GSK3ß, inactive K85RGSK3ß, or wild-type GSK3ß with wild-type PKB. K+ channel activity was measured utilizing dual electrode voltage clamp. RESULTS: BK channel activity in BKM513I+Δ899-903 expressing oocytes was significantly increased by co-expression of GSK3ß, but not by co-expression of K85RGSK3ß. The effect of wild type GSK3ß was abrogated by additional co-expression of wild-type PKB and by 24 hours incubation with Lithium (1 mM). Disruption of channel insertion into the cell membrane by brefeldin A (5 µM) was followed by a decline of the current to a similar extent in oocytes expressing BK and GSK3ß and in oocytes expressing BK alone. CONCLUSION: GSK3ß may up-regulate BK channels, an effect disrupted by Lithium or additional expression of PKB and possibly participating in the regulation of cell volume and excitability.


Assuntos
Regulação da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Oócitos/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Animais , Brefeldina A/farmacologia , Cálcio/metabolismo , Cátions Monovalentes , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Tamanho Celular/efeitos dos fármacos , Feminino , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Lítio/metabolismo , Lítio/farmacologia , Camundongos , Microinjeções , Oócitos/efeitos dos fármacos , Técnicas de Patch-Clamp , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Transgenes , Xenopus laevis
11.
Cell Physiol Biochem ; 39(2): 693-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27441368

RESUMO

BACKGROUND: Blood platelets are activated by increase of cytosolic Ca2+ activity ([Ca2+]i). Ca2+ entry is accomplished in part by store operated Ca2+ entry (SOCE) involving Ca2+ release activated Ca2+-channel (CRAC) moiety Orai1 and its regulator STIM1, which are stimulated by depletion of intracellular Ca2+ stores. An increase of [Ca2+]i is terminated by Na+/Ca2+-exchange. The expression of both, Orai1 and STIM1 in megakaryocytes is up-regulated by tumor growth factor TGFß1, a powerful regulator of megakaryocyte differentiation. The present study explored whether TGFß1 similarly modifies megakaryocyte Na+/Ca2+-exchanger activity. METHODS: [Ca2+]i was determined utlizing Fura-2 fluorescence, SOCE from increase of [Ca2+]i, following readdition of extracellular Ca2+ after store depletion, and Na+/Ca2+-exchanger activity from increase of [Ca2+]i and whole cell currents following removal of extracellular Na+. RESULTS: TGFß1 treatment not only augments the increase of [Ca2+]i following store depletion and SOCE, but significantly up-regulates Na+/Ca2+-exchanger activity as apparent from [Ca2+]i measurements and whole cell currents. CONCLUSIONS: TGFß1 is a powerful stimulator of both, SOCE and Na+/Ca2+-exchanger activity in megakaryocytes.


Assuntos
Megacariócitos/efeitos dos fármacos , Trocador de Sódio e Cálcio/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Regulação para Cima/efeitos dos fármacos , Animais , Cálcio/metabolismo , Cálcio/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Espaço Extracelular/metabolismo , Fura-2/química , Fura-2/metabolismo , Megacariócitos/metabolismo , Megacariócitos/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Técnicas de Patch-Clamp , Potássio/metabolismo , Potássio/farmacologia , Sódio/metabolismo
12.
Cell Physiol Biochem ; 38(1): 359-67, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26824455

RESUMO

BACKGROUND: The serum & glucocorticoid inducible kinase isoform SGK3 is a powerful regulator of several transporters, ion channels and the Na+/K+ ATPase. Targets of SGK3 include the ubiquitin ligase Nedd4-2, which is in turn a known regulator of the voltage gated K+ channel Kv1.5 (KCNA5). The present study thus explored whether SGK3 modifies the activity of the voltage gated K+ channel KCNA5, which participates in the regulation of diverse functions including atrial cardiac action potential, activity of vascular smooth muscle cells, insulin release and tumour cell proliferation. METHODS: cRNA encoding KCNA5 was injected into Xenopus oocytes with and without additional injection of cRNA encoding wild-type SGK3, constitutively active S419DSGK3, inactive K191NSGK3 and/or wild type Nedd4-2. Voltage gated K+ channel activity was quantified utilizing dual electrode voltage clamp. RESULTS: Voltage gated current in KCNA5 expressing Xenopus oocytes was significantly enhanced by wild-type SGK3 and S419DSGK3, but not by K191NSGK3. SGK3 was effective in the presence of ouabain (1 mM) and thus did not require Na+/K+ ATPase activity. Coexpression of Nedd4-2 decreased the voltage gated current in KCNA5 expressing Xenopus oocytes, an effect largely reversed by additional coexpression of SGK3. CONCLUSION: SGK3 is a positive regulator of KCNA5, which is at least partially effective by abrogating the effect of Nedd4-2.


Assuntos
Canal de Potássio Kv1.5/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Camundongos , Mutagênese Sítio-Dirigida , Ubiquitina-Proteína Ligases Nedd4 , Oócitos/metabolismo , Ouabaína/farmacologia , Técnicas de Patch-Clamp , Proteínas Serina-Treonina Quinases/genética , RNA Complementar/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Xenopus/crescimento & desenvolvimento , Xenopus/metabolismo , Proteínas de Xenopus
13.
Cell Physiol Biochem ; 38(2): 683-95, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26859825

RESUMO

BACKGROUND/AIMS: Cell proliferation and migration are regulated by cytosolic Ca2+ activity ([Ca2+]i). Mechanisms modifying [Ca2+]i include store-operated Ca(2+)-entry (SOCE) accomplished by the pore-forming ion channel unit Orai1 and its regulator STIM1, as well as Ca2+ extrusion by Na+/Ca2+ exchanger NCX1. Kinases participating in the orchestration of cell proliferation include the Janus activated kinase JAK2. The present study explored the impact of pharmacological JAK2 inhibition on SOCE and Na+/Ca2+ exchange. METHODS: MCF-7 breast carcinoma cells were studied in the absence and presence of the JAK2 inhibitors TG101348 (250 nM - 1 µM) or of AG490 (20 - 40 µM). Transcript levels were quantified with RT-PCR, protein abundance with immunoblotting, [Ca2+]i with Fura-2-fluorescence, SOCE from increase of [Ca2+]i following Ca2+ re-addition after Ca(2+)-store depletion with sarcoendoplasmatic Ca(2+)-ATPase (SERCA) inhibitor thapsigargin (1 µM), and Na+/Ca2+ exchanger activity from increase of [Ca2+]i as well as Ca2+ current in whole cell patch clamp following extracellular Na+ removal. Migratory activity was determined by a wound healing assay. RESULTS: JAK2 inhibitor TG101348 (1 µM) decreased Orai1 and STIM1 protein abundance, increased NCX1 transcript levels, decreased Ca2+ release from intracellular stores, decreased SOCE, increased Ca2+ entry as well as Ca(2+)-current following extracellular Na(+)-removal, and decreased migration. Similar effects on Ca2+ release, SOCE, and Ca(2+)-entry following extracellular Na(+)-removal were observed following treatment with AG490. CONCLUSION: The present observations disclose a novel powerful mechanism regulating intracellular Ca2+ release, cellular Ca2+ entry, cellular Ca2+ extrusion and cell migration.


Assuntos
Cálcio/metabolismo , Janus Quinase 2/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirrolidinas/farmacologia , Sulfonamidas/farmacologia , Tirfostinas/farmacologia , Canais de Cálcio/metabolismo , Movimento Celular/efeitos dos fármacos , Humanos , Janus Quinase 2/metabolismo , Células MCF-7 , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína ORAI1 , Piridinas/farmacologia , Sódio/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Molécula 1 de Interação Estromal , Tiazinas/farmacologia
14.
Cell Physiol Biochem ; 39(5): 2077-2087, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27825168

RESUMO

BACKGROUND: Serum & Glucocorticoid Regulated Kinase 1 (SGK1) plays a fundamental role in ion and solute transport processes in epithelia. In the endometrium, down-regulation of SGK1 during the window of receptivity facilitates embryo implantation whereas expression of a constitutively active mutant in the murine uterus blocks implantation. METHODS/RESULTS: Here, we report that treatment of endometrial epithelial cells with specific inhibitors of the phosphoinositide 3-kinase (PI3K)/AKT activity pathway results in reciprocal activation of SGK1. Flushing of the uterine lumen of mice with a cell permeable, substrate competitive phosphatidylinositol analogue that inhibits AKT activation (AKT inhibitor III) resulted in Sgk1 phosphorylation, down-regulation of the E3 ubiquitin-protein ligase Nedd4-2, and increased expression of epithelial Na+ channels (ENaC). Furthermore, exposure of the uterine lumen to AKT inhibitor III prior to embryo transfer induced a spectrum of early pregnancy defects, ranging from implantation failure to aberrant spacing of implantation sites. CONCLUSION: Taken together, our data indicate that the balanced activities of two related serine/threonine kinases, AKT and SGK1, critically govern the implantation process.


Assuntos
Implantação do Embrião/efeitos dos fármacos , Proteínas Imediatamente Precoces/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Animais , Linhagem Celular , Endométrio/citologia , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Proteínas Imediatamente Precoces/agonistas , Proteínas Imediatamente Precoces/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ubiquitina-Proteína Ligases Nedd4 , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Gravidez , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
15.
Cell Physiol Biochem ; 39(4): 1295-306, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27606670

RESUMO

BACKGROUND: Serum & glucocorticoid inducible kinase (SGK1) regulates several ion channels, including amiloride sensitive epithelial Na+ channel (ENaC). SGK1 and ENaC in the luminal endometrium epithelium, are critically involved in embryo implantation, although little is known about their regulation. The present study explored whether SGK1 and ENaC are modulated by LEFTYA, a negative regulator of uterine receptivity. METHODS: Expression levels were determined by qRT-PCR and Western blotting, ENaC channel activity by whole cell patch clamp and transepithelial current by Ussing chamber experiments. RESULTS: Treatment of Ishikawa cells, an endometrial adenocarcinoma model cell line of endometrial epithelial cells, with LEFTYA rapidly up-regulated SGK1 and ENaC transcript and protein levels. Induction of ENaC in response to LEFTYA was blunted upon co-treatment with the SGK1 inhibitor EMD638683. ENaC levels also significantly upregulated upon expression of a constitutively active, but not a kinase dead, SGK1 mutant in Ishikawa cells. LEFTYA increased amiloride sensitive Na+-currents in Ishikawa cells and amiloride sensitive transepithelial current across the murine endometrium. Furthermore, LEFTYA induced the expression of ENaC in the endometrium of wild-type but not of Sgk1-deficient mice. CONCLUSIONS: LEFTYA regulates the expression and activity of ENaC in endometrial epithelial cells via SGK1. Aberrant regulation of SGK1 and ENaC by LEFTYA could contribute to the pathogenesis of unexplained infertility.


Assuntos
Células Epiteliais/efeitos dos fármacos , Canais Epiteliais de Sódio/genética , Proteínas Imediatamente Precoces/genética , Fatores de Determinação Direita-Esquerda/farmacologia , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , Amilorida/farmacologia , Animais , Benzamidas/farmacologia , Linhagem Celular Tumoral , Cultura em Câmaras de Difusão , Endométrio/citologia , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Canais Epiteliais de Sódio/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Hidrazinas/farmacologia , Proteínas Imediatamente Precoces/antagonistas & inibidores , Proteínas Imediatamente Precoces/deficiência , Fatores de Determinação Direita-Esquerda/genética , Fatores de Determinação Direita-Esquerda/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Patch-Clamp , Cultura Primária de Células , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/deficiência , RNA Mensageiro/metabolismo , Transdução de Sinais
16.
Cell Physiol Biochem ; 39(3): 1209-28, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27595398

RESUMO

BACKGROUND: Similar to tumor cells, activated T-lymphocytes generate ATP mainly by glycolytic degradation of glucose. Lymphocyte glucose uptake involves non-concentrative glucose carriers of the GLUT family. In contrast to GLUT isoforms, Na+-coupled glucose-carrier SGLT1 accumulates glucose against glucose gradients and is effective at low extracellular glucose concentrations. The present study explored expression and regulation of SGLT1 in activated murine splenic cytotoxic T cells (CTLs) and human Jurkat T cells. METHODS: FACS analysis, immunofluorescence, confocal microscopy, chemiluminescence and Western blotting were employed to estimate SGLT1 expression, function and regulation in lymphocytes, as well as dual electrode voltage clamp in SGLT1 ± JAK3 expressing Xenopus oocytes to quantify the effect of janus kinase3 (JAK3) on SGLT1 function. RESULTS: SGLT1 is expressed in murine CTLs and also in human Jurkat T cells. 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose uptake was significantly decreased by SGLT1-blocker phloridzin (0.2 mM) and by pharmacological inhibition of JAK3 with WHI-P131 (156 µM), WHI-P154 (11.2 µM) and JAK3 inhibitor VI (0.5 µM). Electrogenic glucose transport (Iglucose) in Xenopus oocytes expressing human SGLT1 was increased by additional expression of human wild type JAK3, active A568VJAK3 but not inactive K851AJAK3. Coexpression of JAK3 enhanced the maximal transport rate without significantly modifying affinity of the carrier. Iglucose in SGLT1+JAK3 expressing oocytes was significantly decreased by WHI-P154 (11.2 µM). JAK3 increased the SGLT1 protein abundance in the cell membrane. Inhibition of carrier insertion by brefeldin A (5 µM) in SGLT1+JAK3 expressing oocytes resulted in a decline of Iglucose, which was similar in presence and absence of JAK3. CONCLUSIONS: SGLT1 is expressed in murine cytotoxic T cells and human Jurkat T cells and significantly contributes to glucose uptake in those cells post activation. JAK3 up-regulates SGLT1 activity by increasing the carrier protein abundance in the cell membrane, an effect enforcing cellular glucose uptake into activated lymphocytes and thus contributing to the immune response.


Assuntos
Glucose/imunologia , Janus Quinase 3/genética , Oócitos/metabolismo , Transportador 1 de Glucose-Sódio/genética , Linfócitos T Citotóxicos/imunologia , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/farmacologia , Animais , Transporte Biológico , Brefeldina A/farmacologia , Células CACO-2 , Desoxiglucose/análogos & derivados , Desoxiglucose/farmacologia , Regulação da Expressão Gênica , Glucose/farmacologia , Humanos , Janus Quinase 3/imunologia , Células Jurkat , Ativação Linfocitária , Camundongos , Oócitos/citologia , Oócitos/efeitos dos fármacos , Técnicas de Patch-Clamp , Florizina/farmacologia , Cultura Primária de Células , Quinazolinas/farmacologia , Transdução de Sinais , Transportador 1 de Glucose-Sódio/imunologia , Baço/citologia , Baço/efeitos dos fármacos , Baço/imunologia , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Transgenes , Xenopus laevis
17.
Kidney Int ; 87(4): 728-37, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25493954

RESUMO

Calcitriol, a powerful regulator of phosphate metabolism and immune response, is generated by 25-hydroxyvitamin D 1α-hydroxylase in the kidney and macrophages. Renal 1α-hydroxylase expression is suppressed by Klotho and FGF23, the expression of which is stimulated by calcitriol. Interferon γ (INFγ) regulates 1α-hydroxylase expression in macrophages through transcription factor interferon regulatory factor-1. INFγ-signaling includes Janus kinase 3 (JAK3) but a role of JAK3 in the regulation of 1α-hydroxylase expression and mineral metabolism has not been shown. Thus, the impact of JAK3 deficiency on calcitriol formation and phosphate metabolism was measured. Renal interferon regulatory factor-1 and 1α-hydroxylase transcript levels, serum calcitriol and FGF23 levels, intestinal phosphate absorption as well as absolute and fractional renal phosphate excretion were significantly higher in jak3 knockout than in wild-type mice. Coexpression of JAK3 increased the phosphate-induced current in renal sodium-phosphate cotransporter-expressing Xenopus oocytes. Thus, JAK3 is a powerful regulator of 1α-hydroxylase expression and phosphate transport. Its deficiency leads to marked derangement of phosphate metabolism.


Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Calcitriol/sangue , Janus Quinase 3/metabolismo , Rim/enzimologia , Fosfatos/metabolismo , RNA Mensageiro/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/análise , Animais , Calbindinas/genética , Calcitriol/biossíntese , Fezes/química , Feminino , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/sangue , Fator Regulador 1 de Interferon/análise , Fator Regulador 1 de Interferon/genética , Mucosa Intestinal/metabolismo , Janus Quinase 3/deficiência , Janus Quinase 3/genética , Rim/química , Masculino , Camundongos , Camundongos Knockout , Oócitos/enzimologia , Fosfatos/análise , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Regulação para Cima , Xenopus
18.
Cell Physiol Biochem ; 37(1): 297-305, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26303250

RESUMO

BACKGROUND/AIMS: Janus kinase 3 (JAK3), a tyrosine kinase contributing to the regulation of cell proliferation and apoptosis of lymphocytes and tumour cells, has been shown to modify the expression and function of several ion channels and transport proteins. Channels involved in the regulation of cell proliferation include the large conductance voltage- and Ca(2+)-activated K(+) channel BK. The present study explored whether JAK3 modifies BK channel protein abundance and current. METHODS: cRNA encoding Ca(2+)-insensitive BK channel (BK(M513I+Δ899-903)) was injected into Xenopus oocytes with or without additional injection of cRNA encoding wild-type JAK3, constitutively active A568VJAK3, or inactive (K851A)JAK3. Voltage gated K(+ )channel activity was measured utilizing dual electrode voltage clamp. Moreover, BK channel protein abundance was determined utilizing flow cytometry in CD19(+) B lymphocyte cell membranes from mice lacking functional JAK3 (jak3(-/-)) and corresponding wild-type mice (jak3(+/+)). RESULTS: BK activity in BK(M513I+Δ899-903) expressing oocytes was slightly but significantly decreased by coexpression of wild-type JAK3 and of (A568V)JAK3, but not by coexpression of (K851A)JAK3. The BK channel protein abundance in the cell membrane was significantly higher in jak3(-/-) than in jak3(+/+) B lymphocytes. The decline of conductance in BK and JAK3 coexpressing oocytes following inhibition of channel protein insertion by brefeldin A (5 µM) was similar in oocytes expressing BK with JAK3 and oocytes expressing BK alone, indicating that JAK3 might slow channel protein insertion into rather than accelerating channel protein retrieval from the cell membrane. CONCLUSION: JAK3 is a weak negative regulator of membrane BK protein abundance and activity.


Assuntos
Janus Quinase 3/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Animais , Antígenos CD19/metabolismo , Apoptose/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Brefeldina A/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino , Camundongos , Oócitos/metabolismo , Xenopus/metabolismo
19.
Cell Physiol Biochem ; 37(5): 1857-68, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26584285

RESUMO

BACKGROUND/AIMS: According to previous observations, enhanced store-operated Ca2+-entry (SOCE) accomplished by the pore forming ion channel unit Orai1 and its regulator STIM1 contribute to therapy resistance of ovary carcinoma cells. Ca2+ signaling is further shaped by Ca2+ extrusion through K+-independent (NCX) and/or K+-dependent (NCKX) Na+/Ca2+-exchangers. The present study thus explored whether therapy resistance is further paralleled by altered expression and/or function of Na+/Ca2+-exchangers. METHODS: In therapy resistant (A2780cis) and therapy sensitive (A2780sens) ovary carcinoma cells transcript levels were estimated from RT-PCR, cytosolic Ca2+-activity ([Ca2+]i) from Fura-2-fluorescence, Na+/Ca2+-exchanger activity from the increase of [Ca2+]i (x0394;[Ca2+]i) and from whole cell current (Ica) following abrupt replacement of Na+ containing (130 mM) and Ca2+ free extracellular perfusate by Na+ free and Ca2+ containing (2 mM) extracellular perfusate, as well as cell death from PI -staining in flow cytometry. RESULTS: The transcript levels of NCX3, NCKX4, NCKX5, and NCKX6, slope and peak of x0394;[Ca2+]i as well as Ica were significantly higher in therapy resistant than in therapy sensitive ovary carcinoma cells. The Na+/Ca2+-exchanger inhibitor KB-R7943 (10 µM) significantly blunted x0394;[Ca2+]i and significantly augmented the cisplatin-induced cell death of therapy resistant ovary carcinoma cells without significantly modifying cisplatin-induced cell death of therapy sensitive ovary carcinoma cells. CONCLUSION: Enhanced Na+/Ca2+-exchanger activity may contribute to the therapy sensitivity of ovary carcinoma cells.


Assuntos
Trocador de Sódio e Cálcio/metabolismo , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Fura-2/química , Humanos , Íons/química , Íons/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Técnicas de Patch-Clamp , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Trocador de Sódio e Cálcio/antagonistas & inibidores , Trocador de Sódio e Cálcio/genética , Tioureia/análogos & derivados , Tioureia/farmacologia , Tioureia/uso terapêutico
20.
Cell Physiol Biochem ; 36(6): 2287-98, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26279433

RESUMO

BACKGROUND/AIMS: Janus kinase 3 (JAK3), a tyrosine kinase mainly expressed in hematopoietic cells, participates in the signaling stimulating cell proliferation. The kinase is expressed in dendritic cells (DCs), antigen presenting cells involved in the initiation and regulation of antigen-specific T-cell responses. Dendritic cell function is regulated by cytosolic Ca(2+) activity ([Ca(2+)]i). Mediators increasing [Ca(2+)]i in DCs include ATP and the chemokine receptor CXCR4 ligand CXCL12. The present study explored, whether JAK3 participates in the regulation of [Ca(2+)]i in DCs. METHODS: Fura-2 fluorescence was employed to determine [Ca(2+)]i, and whole cell patch clamp to decipher electrogenic transport in immature DCs isolated from bone marrow of JAK3-knockout (jak3(-/-)) or wild-type mice (jak3(+/+)). RESULTS: Without treatment, [Ca(2+)]i was similar in jak3(-/-) and jak3(+/+) DCs. Addition of ATP (100 µM) was followed by transient increase of [Ca(2+)]i reflecting Ca(2+) release from intracellular stores, an effect significantly less pronounced in jak3(-/-) DCs than in jak3(+/+) DCs. CXCL12 administration was followed by a sustained increase of [Ca(2+)]i reflecting receptor operated Ca(2+) entry, an effect significantly less rapid in jak3(-/-) DCs than in jak3(+/+) DCs. In addition, the Ca(2+) release-activated Ca(2+) channel (CRAC) current triggered by IP3-induced Ca(2+) store depletion and CXCL12 was significantly higher in DCs from jak3(+/+) mice than in jak3(-/-) mice. Inhibition of sarcoendoplasmatic reticulum Ca(2+)-ATPase (SERCA) by thapsigargin (1 µM) in the absence of extracellular Ca(2+) was followed by a transient increase of [Ca(2+)]i reflecting Ca(2+) release from intracellular stores, and subsequent readdition of extracellular Ca(2+) in the continued presence of thapsigargin was followed by a sustained increase of [Ca(2+)]i reflecting store operated Ca(2+) entry (SOCE). Both, Ca(2+) release from intracellular stores and SOCE were again significantly lower in jak3(-/-) DCs than in jak3(+/+) DCs. Pretreatment of jak3(+/+) DCs with JAK inhibitor WHI-P154 (22 µM, 10 minutes or 24 hours) significantly blunted both thapsigargin induced Ca(2+) release and subsequent SOCE. Abrupt replacement of Na(+) containing (130 mM) and Ca(2+) free (0 mM) extracellular bath by Na(+) free (0 mM) and Ca(2+) containing (2 mM) extracellular bath increased [Ca(2+)]i reflecting Na(+)/Ca(2+) exchanger activity, an effect again significantly less pronounced in jak3(-/-) DCs than in jak3(+/+) DCs. CONCLUSIONS: JAK3 deficiency is followed by down-regulation of cytosolic Ca(2+) release, receptor and store operated Ca(2+) entry and Na(+)/Ca(2+) exchanger activity in DCs.


Assuntos
Cálcio/metabolismo , Células Dendríticas/metabolismo , Janus Quinase 3/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Quimiocina CXCL12/farmacologia , Células Dendríticas/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Feminino , Janus Quinase 3/deficiência , Masculino , Camundongos , Quinazolinas/farmacologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Tapsigargina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA