Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 89(14): 7425-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25948748

RESUMO

Infection of human neurons in vitro with varicella-zoster virus (VZV) at a low multiplicity of infection does not result in a cytopathic effect (CPE) within 14 days postinfection (dpi), despite production of infectious virus. We showed that by 28 dpi a CPE ultimately developed in infected neurons and that interferon gamma inhibited not only the CPE but also VZV DNA accumulation, transcription, and virus production, thereby prolonging the life of VZV-infected neurons.


Assuntos
Herpesvirus Humano 3/imunologia , Herpesvirus Humano 3/fisiologia , Interferon gama/imunologia , Neurônios/fisiologia , Neurônios/virologia , Sobrevivência Celular , Efeito Citopatogênico Viral , Humanos , Replicação Viral/efeitos dos fármacos
2.
Mol Cancer Res ; 15(4): 382-394, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28108622

RESUMO

TRAIL is a potent death-inducing ligand that mediates apoptosis through the extrinsic pathway and serves as an important endogenous tumor suppressor mechanism. Because tumor cells are often killed by TRAIL and normal cells are not, drugs that activate the TRAIL pathway have been thought to have potential clinical value. However, to date, most TRAIL-related clinical trials have largely failed due to the tumor cells having intrinsic or acquired resistance to TRAIL-induced apoptosis. Previous studies to identify resistance mechanisms have focused on targeted analysis of the canonical apoptosis pathway and other known regulators of TRAIL receptor signaling. To identify novel mechanisms of TRAIL resistance in an unbiased way, we performed a genome-wide shRNA screen for genes that regulate TRAIL sensitivity in sublines that had been selected for acquired TRAIL resistance. This screen identified previously unknown mediators of TRAIL resistance including angiotensin II receptor 2, Crk-like protein, T-Box Transcription Factor 2, and solute carrier family 26 member 2 (SLC26A2). SLC26A2 downregulates the TRAIL receptors, DR4 and DR5, and this downregulation is associated with resistance to TRAIL. Its expression is high in numerous tumor types compared with normal cells, and in breast cancer, SLC26A2 is associated with a significant decrease in relapse-free survival.Implication: Our results shed light on novel resistance mechanisms that could affect the efficacy of TRAIL agonist therapies and highlight the possibility of using these proteins as biomarkers to identify TRAIL-resistant tumors, or as potential therapeutic targets in combination with TRAIL. Mol Cancer Res; 15(4); 382-94. ©2017 AACR.


Assuntos
Proteínas de Transporte de Ânions/genética , Resistencia a Medicamentos Antineoplásicos , Neoplasias/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Proteínas de Transporte de Ânions/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , RNA Interferente Pequeno/genética , Transportadores de Sulfato , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA