RESUMO
WHAT IS KNOWN AND OBJECTIVE: Aristolochic acid (AA) is an abundant compound in Aristolochia plants and various natural herbs. In the 1990s, a slimming formula used in Belgium that contains Aristolochia fangchi was reported to cause kidney damage and bladder cancer, and aristolochic acid nephropathy (AAN) is now well recognized worldwide. In October 2017, researchers reported an AA signature that is closely associated with hepatocellular carcinoma (HCC) worldwide. COMMENT: There are differing opinions on the toxicity of AA, and different countries have taken different measures to address the issue. There is a lack of clarity on the causal role of AA in hepatocarcinogenesis and on the potential underlying mechanisms for the reported nephrotoxicity and carcinogenicity. The toxicity of AA differs depending on gender and age, and other risk factors that could explain the variability in the toxicity of AA remain to be identified. WHAT IS NEW AND CONCLUSION: Whether preparations containing AA, such as many Chinese medicines, should be used remains controversial, and this issue warrants further investigation before definite conclusions can be drawn.
Assuntos
Ácidos Aristolóquicos/efeitos adversos , Carcinoma Hepatocelular/induzido quimicamente , Nefropatias/induzido quimicamente , Neoplasias Hepáticas/induzido quimicamente , Fatores Etários , Ácidos Aristolóquicos/administração & dosagem , Carcinoma Hepatocelular/epidemiologia , Feminino , Humanos , Nefropatias/epidemiologia , Neoplasias Hepáticas/epidemiologia , Masculino , Fatores de Risco , Fatores SexuaisRESUMO
BACKGROUND/OBJECTIVES: Sjogren - Larsson syndrome (SLS) is a rare autosomal recessive disease of the mutation ALDH3A2 that identifies a part of fatty acids for fatty aldehyde dehydrogenase: NAD-oxidoreductase enzyme complex. This study aimed to access variant ALDH3A2 gene coded for FALDH and products regulating pathogenic melanogenesis owing to increased oxidative stress and reactive oxygen species resulting in DNA harm in SLS. By turning them into fatty acids, FALDH avoids the accumulation of toxic fatty aldehydes. The mutation results in the accumulation of aldehyde-modified lipids or fatty alcohols that may interfere with skin and brain function. METHODS: In Nov 2018, we performed a literature search in PubMed for clinical studies, clinical trials, case reports, controlled trials, randomized controlled trials, and systemic reviews. The search terms we used were "SJOGREN-LARSSON SYNDROME" AND "HYPERMELANNOSIS" OR "FALDH" (from 1985). The search resulted in 1,289 articles, out of these 95 articles met our inclusion exclusion criteria. Our inclusion criteria included relevant original articles relevant, critical systemic reviews, and crucial referenced articles, ex-clusion criteria included duplicates and articles not published in English language. RESULTS: Toxicity of long-chain aldehydes to FALDH-deficient cells owing to accumulation under the profound epidermis layer improves oxidative stress in the cell resulting in keratinocyte hyperproliferation. CONCLUSION: While it continues to be determined whether accumulated fatty alcohol and fatty aldehydes obtained from ether glycerolipids and sphingolipids improve the susceptibility of melanocytes and their element accountable for skin hyperpigmentation to biological colour.
Assuntos
Aldeído Oxirredutases/genética , Hiperpigmentação/genética , Melaninas/biossíntese , Síndrome de Sjogren-Larsson/complicações , Aldeído Oxirredutases/metabolismo , Aldeídos/metabolismo , Animais , Proliferação de Células , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Humanos , Hiperpigmentação/patologia , Queratinócitos/patologia , Melanócitos/patologia , Camundongos , Camundongos Knockout , Mutação , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , Síndrome de Sjogren-Larsson/genética , Pele/citologia , Pele/patologia , Esfingolipídeos/metabolismoRESUMO
Autism spectrum disorder (ASD) is a developmental disability which may cause significant social, communication, and behavioral challenges. Besides certain essential symptoms, a lot of ASD individuals also suffer the comorbidity of gut microbiota dysbiosis, which possibly causes a variety of gastrointestinal (GI) difficulties. Interestingly, evidence has indicated that behavioral output may be modulated through the communication between the central nervous system and gut microbiota via the gut-brain axis. Polyunsaturated fatty acids (PUFAs) and n-3 fatty acids (n-3 PUFA) are structurally and functionally crucial components for the brain, and the state of n-3 PUFAs also affects the gut microbiota. However, how varying intake ratios of n-3/n6 PUFAs affect the gut microbiota composition in ASDs is not well-understood. Pregnant female Wistar rats with intraperitoneal administration of valproate acid (VPA) at embryonic day (E) 12.5 and their male offspring were grouped and fed three diets: a control chow (VPA group), omega-3 deficient (A group), and n-3/n6 (1:5) diet (B group). The diet of pregnant female Wistar rats with intraperitoneal administration of saline and their male offspring was a control chow (normal group). Microbial composition and species abundance were investigated accordingly by the 16S rRNA gene-based metagenomics analysis on the fecal samples. Results showed that fecal microbial abundance was decreased because of VPA administration in the period of pregnancy, and the changing pattern of gut microbiota was similar to that reported in ASD patients. Furthermore, the n-3/n6 (1:5) diet increased the fecal microbial abundance and decreased the elevated Firmicutes. In conclusion, n-3/n6 PUFAs (1:5) diet supplementation may alter gut microbiota composition in VPA-exposed rats. This study put forward a new strategy for the intervention and treatment of autism by n-3/n-6 PUFAs ratio supplementation intakes.