Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(16): 160503, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35522486

RESUMO

We propose and demonstrate a protocol for high-fidelity indirect readout of trapped ion hyperfine qubits, where the state of a ^{9}Be^{+} qubit ion is mapped to a ^{25}Mg^{+} readout ion using laser-driven Raman transitions. By partitioning the ^{9}Be^{+} ground-state hyperfine manifold into two subspaces representing the two qubit states and choosing appropriate laser parameters, the protocol can be made robust to spontaneous photon scattering errors on the Raman transitions, enabling repetition for increased readout fidelity. We demonstrate combined readout and back-action errors for the two subspaces of 1.2_{-0.6}^{+1.1}×10^{-4} and 0_{-0}^{+1.9}×10^{-5} with 68% confidence while avoiding decoherence of spectator qubits due to stray resonant light that is inherent to direct fluorescence detection.

2.
Phys Rev Lett ; 128(8): 080502, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35275690

RESUMO

We demonstrate a simplified method for dissipative generation of an entangled state of two trapped-ion qubits. Our implementation produces its target state faster and with higher fidelity than previous demonstrations of dissipative entanglement generation and eliminates the need for auxiliary ions. The entangled singlet state is generated in ∼7 ms with a fidelity of 0.949(4). The dominant source of infidelity is photon scattering. We discuss this error source and strategies for its mitigation.

3.
Phys Rev Lett ; 126(25): 250507, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34241508

RESUMO

Characterization and suppression of noise are essential for the control of harmonic oscillators in the quantum regime. We measure the noise spectrum of a quantum harmonic oscillator from low frequency to near the oscillator resonance by sensing its response to amplitude modulated periodic drives with a qubit. Using the motion of a trapped ion, we experimentally demonstrate two different implementations with combined sensitivity to noise from 500 Hz to 600 kHz. We apply our method to measure the intrinsic noise spectrum of an ion trap potential in a previously unaccessed frequency range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA