Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(26): e2309091, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38247184

RESUMO

Activating the lattice oxygen in the catalysts to participate in the oxygen evolution reaction (OER), which can break the scaling relation-induced overpotential limitation (> 0.37 V) of the adsorbate evolution mechanism, has emerged as a new and highly effective guide to accelerate the OER. However, how to increase the lattice oxygen participation of catalysts during OER remains a major challenge. Herein, P-incorporation induced enhancement of lattice oxygen participation in double perovskite LaNi0.58Fe0.38P0.07O3-σ (PLNFO) is studied. P-incorporation is found to be crucial for enhancing the OER activity. The current density reaches 1.35 mA cmECSA -2 at 1.63 V (vs RHE), achieving a sixfold increase in intrinsic activity. Experimental evidences confirm the dominant lattice oxygen participation mechanism (LOM) for OER pathway on PLNFO. Further electronic structures reveal that P-incorporation shifts the O p-band center by 0.7 eV toward the Fermi level, making the states near the Fermi level more O p character, thus facilitating LOM and fast OER kinetics. This work offers a possible method to develop high-performance double perovskite OER catalysts for electrochemical water splitting.

2.
J Colloid Interface Sci ; 660: 617-627, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266343

RESUMO

Clean H2 fuel obtained from the photocatalytic water splitting to hydrogen reaction could efficiently alleviate current energy crisis and the concomitant environmental pollution problems. Therefore, it is desirable to search for a highly efficient photocatalytic system to decrease the energy barrier of water splitting reaction. Herein, the 1T/2H mixed phase MoS2 sample with Schottky junction between contact interfaces is developed through molten salt synthesis for photocatalytic hydrogen production under a dye-sensitized system (Eosin Y-TEOA-MoS2) driven by the visible light. In mixed phase MoS2 sample, the photogenerated electrons of 2H-phase MoS2 migrated to the 1T-phase MoS2 are difficult to jump back because of the existence of Schottky barrier, which greatly suppresses the quenching of EY and therefore results in an enhanced hydrogen evolution performance. Therefore, the optimized MoS2 sample (MoS2-350) has an initial hydrogen evolution rate of 213 µmol h-1 and corresponding apparent quantum yield of 36.1 % at 420 nm, far higher than those of pure Eosin Y. It is strongly confirmed by the steady-state/time-resolved photoluminescence (PL) spectra and transient photocurrent response experiments. With the assistance of Density functional theory (DFT) calculation, the function of Schottky junction in photocatalytic hydrogen evolution reaction is well explained. In addition, a new and universal method (SVM curve) of judging oxidation or reduction quenching for photosensitizers is proposed.

3.
Materials (Basel) ; 17(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38203895

RESUMO

The nonlinear optical properties of carbon dots have been in the spotlight in recent years. In light of the complexity and diversity of factors affecting the nonlinear optical properties of carbon dots, how to reveal the origin and physical mechanism of the nonlinear optical properties of carbon dots accurately has become a problem. In this work, a template-free method was designed to prepare carbon dots via solid-phase reaction with phloroglucinol as a single carbon source and sodium bisulfate as the catalyst. This method is simple, green, safe, and easy to be prepared on a large scale. Three carbon dots with different luminous colors were obtained by simply adjusting the reaction temperature. The rise of reaction temperature affects the surface functional groups, and then hinders the luminescence of surface states, leading to the change of luminescence properties. The nonlinear optical properties of carbon dots were analyzed by the Z-scan technique. Surprisingly, all carbon dots have nonlinear optical responses, but there are differences in performance. Results prove the increase in sp2 domains may contribute to the significant improvement of the nonlinear optical properties of carbon dots, indicating a direction to improve the nonlinear optical properties of carbon dots.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA